Self Studies

Application of Derivatives Test - 42

Result Self Studies

Application of Derivatives Test - 42
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The entire graph of the equation $$y=x^{2}+kx-x+9$$ is strictly above the $$x-$$axis if and only if : 
    Solution
    $$y=x^2+kx-x+9$$
    $$a>0$$
    if $$b^2-4ac<0$$ & $$a>0$$
    then the graph will always be above x-axis
    $$ a = 1 \therefore a > 0 $$.
    $$(K-1)^2-4\times 9<0$$
    $$(K-1)^2-6^2<0$$
    $$(K-1-6)(K-1+6)<0$$
    $$(K-7)(K+5)<0$$
    $$K>-5,K<7$$
    $$-5<K<7$$
    Option B.
  • Question 2
    1 / -0
    If $$y=e^{4x}+2e^{-x}$$ satisfied the equation $$\dfrac{d^{3}y}{dx^{3}}+A\dfrac{dy}{dx}+By=0$$ then value of $$|A+B|$$ is 
    Solution
    $$\dfrac{d^3y}{dx^3}$$ = $$64e^{4x}$$ - $$2e^{-x}$$

    $$\dfrac{dy}{dx}$$ = $$4e^{4x}$$ - $$2e^{-x}$$

    $$\dfrac{d^3y}{dx^3}$$ + $$A$$$$\dfrac{dy}{dx}$$ + $$By$$ = 0

    $$\Rightarrow$$ $$e^{4x} (64+4A+B)$$ + $$2e^{-x} (-1-A+B)$$ = 0

    64 +4A + B = 0                                         -(I)
    -1 - A + B = 0                                              -(II)

    Solving (i) and (ii),
    A = -13 ; B = -12

    $$\therefore$$ $$|A + B|$$ = $$25$$

    So, the correct option is 'B'.
  • Question 3
    1 / -0
    Let $$f(x)$$ be a differentiate function and $$f(\alpha)=f(\beta)=0(\alpha < \beta)$$, then in the interval $$(\alpha, \beta)$$.
    Solution
    If $$f(x)$$ is a differentiable function with 
    $$f(\alpha)=f(\beta)=0(\alpha< \beta)$$
    then in interval $$(\alpha,\beta)$$ for some part
    $$f'(x)<0$$
    $$A+$$ are point
    $$f(x)=0$$
    $$f(x).f'(x)$$ has at least are real root.

  • Question 4
    1 / -0
    If $$f(x) = g(x) (x - \lambda)^2 \,$$ and $$\, g (\lambda)$$, where  $$0 < x \le 1$$, then in this interval 
  • Question 5
    1 / -0
    Let $$h(x) = f(x) - (f (x) )^2 + (f(x))^3$$ for every real number $$x$$, then 
    Solution
    $$h(x)=f(x)-(f(x))^2+(f(x))^3$$

    When $$x=2$$

    $$h(x)=2-2^2+2^3=6$$

    When $$x=-2$$

    $$h(x)=-2-(-2)^2+(-2)^3=-14$$

    Therefore, h is increasing whenever f is increasing and decreasing whenever f is decreasing.
  • Question 6
    1 / -0
    If $$f'\left( x \right) = \sqrt {2{x^2} - 1} $$ and $$y = f\left( {{x^2}} \right)$$, then $$\frac{{dy}}{{dx}}$$ at $$x = 1$$ is equal to 
    Solution
    $$f'\left( x \right) = \sqrt {2{x^2} - 1} $$        $$y = f\left( {{x^2}} \right)$$

    $$\begin{array}{l}\frac{{dy}}{{dx}} = f'\left( {{x^2}} \right) \times \left[ {2x} \right]\\now\,\,\,f'\left( x \right) = \sqrt {2{x^2} - 1} \\f'\left( {{x^2}} \right) = \sqrt {2{x^4} - 1} \\\therefore \,\frac{{dy}}{{dx}} = \sqrt {2{x^4} - 1}  \times 2x = 2\end{array}$$
  • Question 7
    1 / -0
    Find the slope of the normal to the curve $$2x^{2} - xy + 3y^{2} = 18$$ at $$(3,1)$$.
    Solution
     Equation of curve $$2{ x }^{ 2 }-xy+3{ y }^{ 2 }=18$$

    Differentiating above equation w.r.t $$x,$$

    $$4x-y-x\dfrac { dy }{ dx }+6y\dfrac { dy }{ dx } =0$$

    $$4x-y+\dfrac { dy }{ dx } (6y-x)=0$$

    $$\dfrac { dy }{ dx } (6y-x)=y-4x$$

    $$\dfrac { dy }{ dx } =\dfrac { y-4x }{ 6y-x } $$

    $$\dfrac { dy }{ dx| } _{ (3,1) }=\dfrac { 1-4\left( 3 \right)  }{ 6-3 } $$

    $$\dfrac { dy }{ dx| } _{ (3,1) }=\dfrac { -11 }{ 3 } $$

    Slope of normal to the curve 
    $$=\dfrac { -1 }{ \dfrac { dy }{ dx| } _{ (3,1) }  } $$
                                                    
    $$=\dfrac { -1 }{ \dfrac { -11 }{ 3 }  } $$
                                                     
    $$=\dfrac { 3 }{ 11 } $$
                                          
    $$\boxed { \therefore    Ans =\dfrac { 3 }{ 11 }  } $$
  • Question 8
    1 / -0
    Area of the triangle formed by the tangent at $$x=2$$ on the curve $$y= \dfrac{8}{4+x^2}$$ with the coordinate axes is (in sq. units)

    Solution
    $$y=\dfrac {8}{4+x^2}$$

    $$At \,\,x=2\ y=1$$

    $$y' =\dfrac {-8(2x)}{(4+x^2)^2}=\dfrac {-16\times 2}{8^2}=\dfrac {-1}{2}$$

    Tangent is $$y=mx+c$$

    $$y=\dfrac {-1}{2}x+c$$

    passes through $$(2, 1)\ C=2$$

    $$2y+x=4$$
    Base of triangle $$=4$$

    Height of triangle $$=\dfrac {4}{2}=2$$

    Area of $$\Delta =\dfrac {1}{2}\times 4\times 2=4\ sq.unit$$

  • Question 9
    1 / -0
    The curve $$y = ax^3 + bx^2 + cx + 8$$ touches $$x-$$ axis at $$P(-2, 0)$$ and cuts $$y-$$ axis at a point $$Q$$ where its gradient is $$3$$. The values of $$a, b, c$$ are respectively ?
    Solution
    $$y=ax^{3}+bx^{2}+cx+8$$
    $$\Rightarrow 0=-8a+4b+c(-2)+8$$
    $$0=-8a+4b-2c+8 ----(1)$$

    It touches $$y-$$ axis at $$Q\Rightarrow x=0$$

    $$y=8$$

    $$Q.(0,8)$$

    $$\dfrac{dy}{dx}=3ax^{2}+2bx+c$$

    Given gradient is $$3$$ at $$G(0,8)$$

    $$3=c$$
    $$\therefore c=3$$

    $$\because$$ the curve touches $$x-$$ axis 

    $$\therefore$$ slope of the tangent at $$P$$ is $$0$$

    $$\dfrac{dy}{dx}=3ax^{2}+2bx+3$$

    $$0=12a-4b+3$$

    $$12a-4b=-3 ---- (1)$$

    eqn $$(1)$$     $$-8a+4b-6+8=0$$
                     $$-8a+4b=-2 --- (ii)$$

    Adding $$(10$$ & $$(2)$$, we get

    $$12a-4b=-3$$
    $$-8a+4b=-2$$
    ____________
    $$4a=-5$$
    $$a=-5/4$$
    $$b=-3$$
    $$\boxed{\therefore a=-5/4, b=-3, c=3}$$
  • Question 10
    1 / -0
    The curve satisfying D.E $$y dx - (x+3{y}^{2})dy=0$$ and passing through the point $$(1,1)$$ also passes through the point:
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now