Self Studies

Application of Derivatives Test - 43

Result Self Studies

Application of Derivatives Test - 43
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$f(x)=x^{3/2}(3x-10), x\ge-0)$$, then $$f(x)$$ is decreasing in
    Solution
    R.E.F image 

    $$ f'(x) = 3x^{3/2}+(3x-10)\dfrac{3}{2}x^{1/2} $$

    Putting $$ f'(x) = 0 \Rightarrow 3x^{3/2}+(3x-10)\dfrac{3}{2}x^{1/2} = 0 $$

    $$ \Rightarrow 2x^{3/2} = (10-3x)x^{1/2} $$
    $$ \Rightarrow 2x = 10-3x $$
    $$ \Rightarrow 5x = 10 $$ 
    $$ \Rightarrow 5x = 10 $$

    $$ \Rightarrow x = 2 $$

    value of $$x$$      Intervals    sign of $$f'(x) $$

    $$x > 2$$            $$x\epsilon (2,\infty )$$    $$ < 0 $$       decreasing 
    $$x< 2 $$        $$ x\epsilon (-\infty ,2) $$   $$ > 0 $$       Increasing 
  • Question 2
    1 / -0
    The numbers of tangent to the curve $$y - 2 = {x^5}$$  which are drawn
    from point $$\left( {2,2} \right)$$ is/are 
    Solution
    $$y-2=x^5 +2$$
    $$y=x^5+2$$
    $$y^1=5x^4$$
    $$y^1=5(2)^4$$
    $$y^1=5\times 16=80$$
  • Question 3
    1 / -0
    If the curves $$\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{4}=1$$ and $$y^{2}=16x$$ intersect at right angles then value of $$a^{2}$$ is
    Solution

  • Question 4
    1 / -0
    Tangents are drawn from a point on the circle $$x^2+y^2=25$$ to the ellipse $$9x^2+16y^2-144=0$$ then the angle between the tangents is 
    Solution

  • Question 5
    1 / -0
    Slope of the line $$ \sqrt { { x }^{ 2 }+{ 4y }^{ 2 }-4xy+4 } +x-2y=1$$ equals to
    Solution

  • Question 6
    1 / -0
    The radius of the sphere is measured as $$ \left( {10 \pm 0.02} \right)cm$$. The error in the measurement of its volume is 
    Solution
    Let $$r$$ be the radius of the sphere.

    $$\Rightarrow$$  $$r=10$$

    Error in the measurement of radius $$=\Delta r$$

    $$\therefore$$  $$\Delta r=0.02\,m$$

    $$\Rightarrow$$  Volume of the sphere $$(V)=\dfrac{4}{3}\pi r^3$$

    We need to find error in calculating the volume that is $$\Delta V$$

    $$\Delta V=\dfrac{dv}{dr}\times \Delta r$$

             $$=\dfrac{d\left(\dfrac{4}{3}\pi r^3\right)}{dr}\times \Delta r$$

             $$=\dfrac{4}{3}\pi\dfrac{d(r^3)}{dr}\times \Delta r$$

             $$=\dfrac{4}{3}\pi(3r^2)\times (0.0.2)$$

             $$=4\pi r^2\times 0.02$$

             $$=4\times 3.14\times (10)^3\times 0.02$$

             $$=251.2\,cm^3$$ i.e. $$251.2\,cc$$

  • Question 7
    1 / -0
    If the normal to the curve $$y=f\left( x \right)$$ at $${(3,4)}$$ makes angle $$\dfrac {3\pi}{4}$$ with $$\bar {OX}$$ then $$f^{ 1 }\left( 3 \right)=$$
    Solution
    $$\because y=f\left(x\right)$$
    $${y}^{‘}={f}^{‘}\left(x\right)$$
    Slope of tangent $$={f}^{‘}\left(x\right)$$
    Slope of normal $$=-\dfrac{1}{{f}^{‘}\left(x\right)}$$
    $$\Rightarrow \tan{\dfrac{3\pi}{4}}=-\dfrac{1}{{f}^{‘}\left(3\right)}$$
    $$\Rightarrow -1=-\dfrac{1}{{f}^{‘}\left(3\right)}$$
    $$\Rightarrow \boxed{{f}^{‘}\left(3\right)}=1$$

  • Question 8
    1 / -0
    Area of the triangle formed by the tangent, normal to the curve $$x^{2}/a^{2}+y^{2}/b^{2}=1$$ at the point $$(a/\sqrt{2} , b/\sqrt{2})$$ and the $$x-$$axis is
    Solution

  • Question 9
    1 / -0
    The inclination of the tangent at $$\theta = \dfrac {\pi}{3}$$ on the curve $$x = a(\theta + \sin \theta), y = a(1 + \cos \theta)$$ is
    Solution
    For the curve , 

    $$\displaystyle \dfrac{dy}{dx} = \dfrac{\dfrac{dy}{d\theta}}{\dfrac{dx}{d\theta}} = \dfrac{\dfrac{d(a(1+cos\theta))}{d\theta}}{\dfrac{d(a(\theta+sin\theta))}{d\theta}} = \dfrac{-asin\theta}{a+acos\theta} = \dfrac{-sin\theta}{1+cos\theta}$$
      
    So, If the inclination of tangent at $$\theta = \dfrac{\pi}{3}$$ be $$y$$ ,

    Then, $$\tan(y) =$$ $$\dfrac{-sin(\dfrac{\pi}{3})}{1+cos\dfrac{\pi}{3}} = \dfrac{-1}{\sqrt{3}}$$

    Thus,$$ y  = \pi-\dfrac{\pi}{6}= \dfrac{5\pi}{6} $$
  • Question 10
    1 / -0
    The greatest slope among the lines represented by the equation $$4x^2 - y^2 + 2y - 1 = 0 $$ is - 
    Solution
    $$4{x}^{2} - {y}^{2} + 2y - 1 = 0$$
    $${y}^{2} - 2y + 1 = 4{x}^{2}$$
    $${\left( y - 1 \right)}^{2} = {\left( 2x \right)}^{2}$$
    $$y - 1 = \pm 2x$$
    $$y = 2x + 1 \text{ or } y = -2x + 1$$
    Comparing the above equations with $$y = mx + c$$, we have
    Slope $$\left( m \right) = 2, -2$$
    Hence the greatest slope will be $$2$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now