Given:$$x = at^2$$
$$y = at^4$$
Then,
$$\Rightarrow t^3 = \dfrac{x}{a}, t^4= \dfrac{y}{a}$$
$$\Rightarrow t = \left(\dfrac{x}{a}\right)^{1/3}\, t = \left(\dfrac{y}{a}\right)^{1/4}$$
$$\Rightarrow \left(\dfrac{x}{a}\right)^{1/3} = \left(\dfrac{y}{a}\right)^{1/4}$$
$$\Rightarrow \left(\dfrac{x}{a}\right)^{\frac{1}{3}\times \frac{4}{12}} = \left(\dfrac{y}{a} \right)^{\frac{1}{4}\times 12}$$
$$\Rightarrow \dfrac{x^4}{a^4} = \dfrac{y^3}{a^2}$$
$$\Rightarrow y^3 = \dfrac{x^4}{a}$$ at $$P(h,k)$$
Also relation $$k^3 = \dfrac{h^4}{a}$$
Now by differentiation of after equation we get
$$3y^2 \dfrac{dy}{dx} = \dfrac{4x^2}{a}$$
$$\dfrac{dy}{dx} = \dfrac{4x^3}{3ay^2}$$
Now $$M_T = \dfrac{dy}{dx} = \dfrac{4x^3}{3ay^2}$$
Now we will find slope of tangent
$$M_T / P(h,x) = \dfrac{4h^3}{3ax^2}$$
equation of tangent $$P(h,k)$$
$$y - k = \dfrac{4h^3}{3ak^2}(x-h)$$
$$\Rightarrow $$ Let $$y = 0$$
Then, $$-k = \dfrac{4h^3}{3ak^2}(x-h)$$
$$\Rightarrow \dfrac{-3ak^3}{4h^3} = x - h$$
Earlier we found that $$k^3 = \dfrac{h^4}{a}$$
Then $$ax^3 = h^4$$
$$\dfrac{-3h^4}{4h^2} = x-h$$
$$\Rightarrow \dfrac{-3h}{4}+h = x$$
$$\Rightarrow x = \dfrac{h}{4}$$
$$\Rightarrow \dfrac{x}{h} = \dfrac{1}{4}$$
Hence option (a) $$1 : 4$$ is the correct choice