Self Studies

Application of Derivatives Test - 45

Result Self Studies

Application of Derivatives Test - 45
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Two lines drawn through the point $$A ( 4,0 )$$  divide the area bounded by the curve $$y = \sqrt { 2 } \sin ( \pi x / 4 )$$  and  $$x$$ - axis between the lines $$x = 2$$  and   $$x = 4$$  into three equal parts. Sum of the slopes of the drawn lines is:
    Solution

    Area bounded by $$y=\sqrt{2}\sin\left(\dfrac{\pi x}{4}\right)$$ and $$x-axis$$ between the lines $$x=2$$ and $$x=4,$$
    $$\Delta=\sqrt{2}\displaystyle\int_2^4\sin\dfrac{\pi x}{4}dx$$

       $$=\left[-\dfrac{4\sqrt{2}}{\pi}.\cos\dfrac{\pi x}{4}\right]^4_2$$

       $$=\dfrac{4\sqrt{2}}{\pi}\,unit^2$$ 

    Let the drawn lines are $$L_1:y-m_1(x-4)=0$$ and $$L_2:y-m_2(x-4)=0,$$ meeting the line $$x=2$$ at the points $$A$$ and $$B,$$ respectively.
    Clearly, $$A=(2,-2m_1);\,B=(2,-2m_2)$$             [ Fig ]
    Now,
    $$\Delta_{ACD}=\dfrac{\Delta}{3}\Rightarrow \dfrac{4\sqrt{2}}{3\pi}=\dfrac{1}{2}.2.(-2m_1)$$
    $$\Rightarrow$$  $$m_1=-\dfrac{2\sqrt{2}}{3\pi}$$ 
    Also, $$\Delta_{BCD}=\dfrac{2\Delta}{3}$$
    $$\Rightarrow$$  $$\dfrac{8\sqrt{2}}{3\pi}=\dfrac{1}{2}\times 2-2m_2$$
    $$\Rightarrow$$  $$m_2=\dfrac{-4\sqrt{2}}{3\pi}$$
    $$\Rightarrow$$  Required sum $$=-\dfrac{2\sqrt{2}}{3\pi}+\left(\dfrac{-4\sqrt{2}}{3\pi}\right)$$

                                   $$=\dfrac{-6\sqrt{2}}{3\pi}$$

                                   $$=\dfrac{-2\sqrt{2}}{\pi}$$

  • Question 2
    1 / -0
    If $$- 4 \leq x \leq 4$$ then critical points of $$f ( x ) = x ^ { 2 } - 6 | x | + 4$$ are 
  • Question 3
    1 / -0
    The number of critical points of the function $$f(x)=|x-1||x-2|$$ is 
    Solution

  • Question 4
    1 / -0
    $$f(x)=\dfrac{x}{5}+\dfrac{4}{x}(x\neq 0)$$ in increasing in
    Solution

  • Question 5
    1 / -0
    The tangent to the curve $$2a^2y=x^3-3ax^2$$ is parallel to the x-axis at the points
    Solution
    Let $$(x_1,y_1)$$ represent the required points.

    The slope of the $$x-$$axis is $$0$$

    Here $$2a^2y=x^3-3ax^2$$, since the points lies on the curve we get

    $$2a^2y_1=x_1^3-3ax_1^2 \quad ...(1)$$

    Consider $$2a^2y=x^3-3ax^2$$

    On differentiating both sides with respect to $$x$$, we get

    $$2a^2\dfrac{dy}{dx}=3x^2-6ax$$

    $$\Rightarrow \dfrac{dy}{dx}=\dfrac{3x^2-6ax}{2a^2}$$

    Slope of the tangent at $$(x_1,y_1)=\left(\dfrac{dy}{dx}\right)_{(x_1,y_1)}=\dfrac{3x_1^2-6ax_1}{2a^2}$$

    It is given that slope of the tangent at $$(x_1,y_1)=$$ slope of the $$x-$$axis.

    $$\Rightarrow \dfrac{3x_1^2-6ax_1}{2a^2}=0$$

    $$\Rightarrow 3x_1^2-6ax_1=0$$

    $$\Rightarrow x_1(3x_1-6a)=0$$

    $$\Rightarrow x_1=0$$ or $$x_1=2a$$

    Also, from $$(1)$$

    $$2a^2y_1=0$$ or $$2a^2y_1=8a^3-12a^3$$

    $$\Rightarrow y_1=0$$ or $$y_1=-2a$$

    Thus, the required points are $$(0,0)$$ and $$(2a,-2a)$$


  • Question 6
    1 / -0
    The line $$3x-4y=0$$
    Solution
    $$3x=4y$$
    $$x=\dfrac { 4y }{ 3 } $$
    $${ x }^{ 2 }+{ y }^{ 2 }=25$$
    $${ x }^{ 2 }-\left( 1+\dfrac { 16 }{ 9 }  \right) =25$$
    $${ x }^{ 2 }=9$$
    $$x=\pm 3$$
    $$y=\pm 9/4$$
    Now,  $${ x }^{ 2 }+{ y }^{ 2 }=25$$
              $$2x+2y\dfrac { dy }{ dx } =0$$
    $$\dfrac { dy }{ dx } =\dfrac { -x }{ y } =\dfrac { -\left( 3 \right)  }{ \left( 9/4 \right)  } =-4/3$$
    $$\dfrac { -dx }{ dy } =3/4\Rightarrow $$ slope of normal at circle and $$3/4\Rightarrow $$ solpe of $$3x-4y=0$$
    So, Line is normal at circle.
  • Question 7
    1 / -0
    If $$x-2y+k=0$$ is a common tangent to $$\displaystyle{ y }^{ 2 }=4x\quad \& \frac { { x }^{ 2 } }{ { a }^{ 2 } } +\frac { { y }^{ 2 } }{ { 3 } } =1\left( a>\sqrt { 3 }  \right)  $$, then the value of a, k and other common tangent are given by
    Solution
    Given:$$x-2y+k=0$$
    $$\Rightarrow\,2y=x+k$$
    $$\Rightarrow\,y=\dfrac{x}{2}+\dfrac{k}{2}$$
    Comparing with $$y=mx+c$$ we get $$m=\dfrac{1}{2}$$ and $$c=\dfrac{k}{2}$$
    $$\therefore\,y=mx+c$$ is tangent to $${y}^{2}=4ax$$ where $$c=\dfrac{a}{m}$$
    $$\Rightarrow\,{y}^{2}=4x,\,a=1$$
    $$\Rightarrow\,c=\dfrac{1}{m}$$
    $$\Rightarrow\,\dfrac{k}{2}=\dfrac{1}{\dfrac{1}{2}}$$
    $$\Rightarrow\,\dfrac{k}{2}=2$$
    $$\therefore\,k=4$$
    Substituting $$m=\dfrac{1}{2}$$ and $$c=\dfrac{1}{m}=\dfrac{1}{\dfrac{1}{2}}=2$$ in $$y=mx+c$$ we get
    $$\Rightarrow\,y=\dfrac{x}{2}+\dfrac{4}{2}$$
    $$\Rightarrow\,y=\dfrac{x}{2}+2$$
    Given:$$y=mx+c$$ is tangent to $$\dfrac{{x}^{2}}{{a}^{2}}+\dfrac{{y}^{2}}{{b}^{2}}=1$$ 
    $$\therefore\,$$ Required condition is $${c}^{2}={a}^{2}{m}^{2}+{b}^{2}$$
    $$\Rightarrow\,4={a}^{2}{\left(\dfrac{1}{2}\right)}^{2}+3$$
    $$\Rightarrow\,\dfrac{{a}^{2}}{4}=4-3=1$$
    $$\Rightarrow\,{a}^{2}=4$$
    $$\Rightarrow\,a=2$$ since $$a>0$$
  • Question 8
    1 / -0
    The tangent at any point of the curve $$x={ at }^{ 3 },y={ at }^{ 4 }$$ divides the abscissa of the point of contact in the ratio
    Solution
    Given:
    $$x = at^2$$
    $$y = at^4$$

    Then,
    $$\Rightarrow t^3 = \dfrac{x}{a}, t^4= \dfrac{y}{a}$$

    $$\Rightarrow t = \left(\dfrac{x}{a}\right)^{1/3}\,  t = \left(\dfrac{y}{a}\right)^{1/4}$$

    $$\Rightarrow \left(\dfrac{x}{a}\right)^{1/3} = \left(\dfrac{y}{a}\right)^{1/4}$$

    $$\Rightarrow \left(\dfrac{x}{a}\right)^{\frac{1}{3}\times \frac{4}{12}} = \left(\dfrac{y}{a} \right)^{\frac{1}{4}\times 12}$$ 

    $$\Rightarrow \dfrac{x^4}{a^4} = \dfrac{y^3}{a^2}$$

    $$\Rightarrow  y^3 = \dfrac{x^4}{a}$$ at $$P(h,k)$$ 

    Also relation $$k^3 = \dfrac{h^4}{a}$$

    Now by differentiation of after equation we get

    $$3y^2 \dfrac{dy}{dx} = \dfrac{4x^2}{a}$$

    $$\dfrac{dy}{dx} = \dfrac{4x^3}{3ay^2}$$

    Now $$M_T = \dfrac{dy}{dx} = \dfrac{4x^3}{3ay^2}$$

    Now we will find slope of tangent

    $$M_T / P(h,x) = \dfrac{4h^3}{3ax^2}$$

    equation of tangent $$P(h,k)$$

    $$y - k = \dfrac{4h^3}{3ak^2}(x-h)$$

    $$\Rightarrow $$ Let $$y = 0$$

    Then, $$-k = \dfrac{4h^3}{3ak^2}(x-h)$$

    $$\Rightarrow \dfrac{-3ak^3}{4h^3} = x - h$$

    Earlier we found that $$k^3 = \dfrac{h^4}{a}$$

    Then $$ax^3 = h^4$$

    $$\dfrac{-3h^4}{4h^2} = x-h$$ 

    $$\Rightarrow \dfrac{-3h}{4}+h = x$$

    $$\Rightarrow x = \dfrac{h}{4}$$

    $$\Rightarrow \dfrac{x}{h} = \dfrac{1}{4}$$

    Hence option (a) $$1 : 4$$ is the correct choice

  • Question 9
    1 / -0
    If the slope of one of the lines represented $${a^3}{x^2} + 2hxy + {b^3}{y^2} = 0$$ be the square of the other, then $$ab(a+b)$$ is equal to:
    Solution

  • Question 10
    1 / -0
    Slope of tangent to the circle $$( x - r ) ^ { 2 } + y ^ { 2 } = r ^ { 2 }$$ at the point $$( x , y )$$ lying on the circle is

    Solution
    $$(x-r)^2+y^2=r^2$$

    $$\dfrac{d}{dx}(x-r)^2+\dfrac{d}{dx}(y^2)=\dfrac{d}{dx}(r^2)$$

    $$2(x-r)+2y\dfrac{dy}{dx}=0$$

    $$x-r+y\dfrac{d}{dx}=0$$

    Therefore the slope of the tangent is,

    $$\dfrac{dy}{dx}=\dfrac{r-x}{y}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now