Self Studies

Application of Derivatives Test - 48

Result Self Studies

Application of Derivatives Test - 48
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$f(x)=\cfrac{x}{5}+\cfrac{5}{x}$$ is increaing in
    Solution
    Given,

    $$f(x)=\dfrac{x}{5}+\dfrac{5}{x}$$

    $$\Rightarrow x=\dfrac{y}{5}+\dfrac{5}{y}$$

    $$x\cdot \:5y=y^2+25$$

    $$y^2-x\cdot \:5y+25=0$$

    $$y=\dfrac{-\left(-x5\right)\pm \sqrt{\left(-x5\right)^2-4\cdot \:1\cdot \:25}}{2\cdot \:1}$$

    $$y=\dfrac{5x \pm 5\sqrt{x^2-4}}{2}$$

    $$x\le \:-2\quad \mathrm{or}\quad \:x\ge \:2$$

    $$\therefore f\left(x\right)\le \:-2\quad \mathrm{or}\quad \:f\left(x\right)\ge \:2$$

    and

    $$\mathrm{Increasing}:-\infty \:<x<-5,\:\mathrm{Decreasing}:-5<x<0,\:\mathrm{Decreasing}:0<x<5,\:\mathrm{Increasing}:5<x<\infty \:$$

    $$\therefore (-\infty ,-5)\cup (5,\infty)$$
  • Question 2
    1 / -0
    The complex number $$\frac{(-\sqrt 3 + 3i)(1-i)}{(3 + \sqrt 3i) (i) (\sqrt 3 + \sqrt 3i)}$$ when represented in the Argand diagram is 
    Solution

  • Question 3
    1 / -0
    If the line $$ax+y=c$$, touches both the curves $${x}^{2}+{y}^{2}=1$$ and $${y}^{2}=4\sqrt{2}x$$, then $$\left| c \right| $$ is equal to:
    Solution
    Tangent to $${y}^{2}=4\sqrt{2}x$$ is $$y=mx+\cfrac { \sqrt { 2 }  }{ m } $$ is also tangent to $${x}^{2}+{y}^{2}=1$$

    $$\Rightarrow \left| \cfrac { \sqrt { 2 } /m }{ \sqrt { 1+{ m }^{ 2 } }  }  \right| =1\Rightarrow m=\pm 1$$

    Tangent will be $$y=x+\sqrt{2}$$ or $$y=-x-\sqrt{2}$$

    compare with $$y=-ax+c$$

    $$\Rightarrow a=\pm 1;c=\pm \sqrt { 2 } $$

    $$\therefore |c|=\sqrt 2$$
  • Question 4
    1 / -0
    Let $$f"(x) > 0$$ and $$\phi (x) = f(x) + f(2 - x) , x \in (0,2)$$ be a function, then the function $$\phi (x)$$ is
    Solution
    $$f"(x) > 0, y = f(x) ; x \in (0, 2)$$
    $$\phi (x) = f(x) + f(2 - x)$$
    $$\phi ' (x) = f' (x) - f' (2 - x)$$
    for $$\phi (x) $$ to be increasing 
    $$\phi' (x) > 0 \Rightarrow f'(x) > f'(2 - x)$$
    $$\Rightarrow x > 2 - x $$   ($$f'(x)$$ is increasing in $$(0, 2)$$)
     $$\Rightarrow x > 1$$
    $$\Rightarrow x \in (1, 2)$$
    For $$\phi (x)$$ to be decreasing 
    $$\phi ' (x) = 0 \Rightarrow f'(x) < f'(2 - x)$$
    $$\therefore x \in (0, 1)$$
  • Question 5
    1 / -0
    The slope of the tangent to the curve $$x=t^2+3t-8, y=2t^2-2t-5$$ at point $$(2, -1)$$ is
    Solution
    $$x=t^2+3t-8$$ ........$$(1)$$
    $$y=2t^2-2t-5$$ ..........$$(2)$$

    Differentiate $$(1)$$, we get
    $$\dfrac{dx}{dt}=2t+3$$

    Differentiate $$(2)$$, we get
    $$\dfrac{dy}{dx}=4t-2$$
    $$m=\dfrac{dy}{dx}=\dfrac{4t-2}{2t+3}$$

    Given point is $$(2, -1)$$
    Put the point in original x and y, we get
    $$\Rightarrow x=t^2+3t-8$$
    $$2=t^2+3t-8$$
    $$t^2+3t-10=0$$
    $$(t-2)(t+5)=0$$
    $$t=2, t=-5$$

    $$\Rightarrow y=2t^2-2t-5$$
    $$(-1)=2t^2-2t-5$$
    $$2t^2-2t-4=0$$
    $$(t+1)(t-2)=0$$
    $$t=-1, t=2$$

    Since, $$t=2$$ common in both parts, so we take
    $$\dfrac{dy}{dx}=\dfrac{4t-2}{2t-3}$$ at $$t=2$$

    At $$t=2$$
    $$\dfrac{dy}{dx}=\dfrac{4(2)-2}{2(2)-3}=\dfrac{8-2}{4+3}=\dfrac{6}{7}$$

    $$m=\dfrac{dy}{dx}=\dfrac{6}{7}$$.
  • Question 6
    1 / -0
    At what points the slope of the tangent to the curve $$x^2+y^2-2x-3=0$$ is zero?
    Solution
    $$x^2+y^2-2x-3=0$$ is zero.

    Differentiate w.r.t. x
    $$2x+2y\dfrac{dy}{dx}-2=0$$

    $$2y\cdot \dfrac{dy}{dx}=2-2x$$

    $$\dfrac{dy}{dx}=\dfrac{2(1-x)}{2y}$$

    $$\dfrac{dy}{dx}=\dfrac{1-x}{y}$$ ........$$(1)$$

    If line is parallel to x-axis
    Angle with x-axis $$=\theta =0$$
    Slope of x-axis$$=\tan\theta =\tan 0^o=0$$
    Slope of tangent $$=$$ Slope of x-axis

    $$\dfrac{dy}{dx}=0$$

    $$\dfrac{1-x}{y}=0$$

    $$x=1$$

    Finding y when $$x=1$$
    $$x^2+y^2-2x-3=0\\$$
    $$(1)^2+y^2-2(1)-3=0\\$$
    $$1+y^2-2-3=0\\$$
    $$y=\pm 2$$

    Hence, the points are $$(1, 2)$$ and $$(1, -2)$$.
  • Question 7
    1 / -0
    The point on the curve $$y=12x-x^2$$, where the slope of the tangent is zero will be
    Solution
    Let the point be $$P(x, y)$$
    $$y=12x-x^2$$
    $$\dfrac{dy}{dx}=12-2x$$
    $$\left(\dfrac{dy}{dx}\right)_{(x_1, y_1)}=12-2x_1$$

    since slope of tangent is zero
    so $$\left(\dfrac{dy}{dx}\right)_{x_1, y_1}=0$$
    $$12-2x_1=0$$
    $$2x_1=12$$
    $$x_1=6$$

    Also curve passing through tangent
    $$y_1=12x_1-x^2_1$$
    $$y_1=12\times 6-36$$
    $$y_1=72-36$$
    $$y_1=36$$
    The points are $$(6, 36)$$.
  • Question 8
    1 / -0
    The slope of the tangent to the curve $$x=3t^2+1, y=t^3-1$$ at $$x=1$$ is
    Solution
    Given curves are,
    $$x=3t^2+1$$           ---- ( 1 )
    $$y=t^3-1$$             ---- ( 2 )
    Substituting $$x=1$$ in ( 1 ) we get,
    $$\Rightarrow$$  $$3t^2+1=1$$
    $$\Rightarrow$$  $$3t^2=0$$
    $$\Rightarrow$$  $$t=0$$
    Differentiate ( 1 ) w.r.t. $$t,$$ we get
    $$\Rightarrow$$  $$\dfrac{dx}{dt}=6t$$
    Differentiate ( 2 ) w.r.t. $$t,$ we get
    $$\Rightarrow$$  $$\dfrac{dy}{dt}=3t^2$$

    $$\Rightarrow$$  $$\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{3t^2}{6t}$$

    $$\therefore$$  $$\dfrac{dy}{dx}=\dfrac{t}{2}$$

    Slope of the tangent $$=\left(\dfrac{dy}{dx}\right)_{t=0}=\dfrac{0}{2}=0$$

  • Question 9
    1 / -0
    Mark the correct alternative of the following.
    The point on the curve $$9y^2=x^3$$, where the normal to the curve makes equal intercepts with the axes is?
    Solution
    Let the required point be $$(x_1, y_1)$$

    equation of the curve is $$9y^2=x^2$$

    since $$(x_1, y_1)$$ lies on the curve, therefore
    $$9y^2_1=x^3_1$$ .......$$(1)$$

    Now $$9y^2=x^3$$
    $$\Rightarrow \dfrac{dy}{dx}=\dfrac{x^2}{6y}$$

    $$\Rightarrow \left(\dfrac{dy}{dx}\right)_{(x_1, y_1)}=\dfrac{x^2}{6y^1}$$

    since normal to the curve at $$(x_1, y_1)$$ makes equal intersepts with the coordinate axis, therefore slope of the normal $$=\pm 1$$

    $$\Rightarrow \dfrac{1}{-(dy/dx)_{(x_1, y_1)}}=\pm 1$$

    $$\Rightarrow (dy/dx)_{(x_1, y_1)}=\pm 1$$

    $$\rightarrow \dfrac{x^2_1}{6y^1}=\pm 1$$

    $$\Rightarrow x^4_1=36y^2_1=36\left(\dfrac{x^3_1}{9}\right)$$ (using $$1$$)

    $$\Rightarrow x^4_1=4x^3_1\Rightarrow x^3_1(x_1-4)=0$$

    $$\Rightarrow x_1=0, 4$$

    Putting $$x_1=0$$ in $$(1)$$ we get
    $$9y^2_1=0\Rightarrow y_1=0$$

    Putting $$x_1=4$$ in $$(1)$$ we get
    $$9y^2_1=(4)^3\Rightarrow y_1=\pm \dfrac{8}{3}$$

    But the line making equal intersepts with the coordinate axes cannot pass through origin.

    Hence, the required points are $$\left(4, \dfrac{8}{3}\right)$$ and $$\left(4, \dfrac{-8}{3}\right)$$.
  • Question 10
    1 / -0
    Mark the correct alternative of the following.
    The line $$y=mx+1$$ is a tangent to the curve $$y^2=4x$$, if the value of m is?
    Solution
    Given equation of the tangent to the given curve
    $$y=mx+1$$
    Now substituting the value of y in
    $$y^2=4x$$, we get
    $$\Rightarrow (mx+1)^2=4x$$
    $$\Rightarrow m^2x^2+1+2mx-4x=0$$
    $$\Rightarrow m^2x^2+x(2m-4)+1=0$$ ..........$$(1)$$
    Since, a tangent touches the curve at one point, the root of equation $$(1)$$ must be equal.
    Thus, we get
    Discriminant, $$D=b^2-4ac=0$$
    $$(2m-4)^2-4(m^2)(1)=0$$
    $$\Rightarrow 4m^2-16m+16-4m^2=0$$
    $$\Rightarrow -16m+16=0$$
    $$\Rightarrow m=1$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now