Self Studies

Application of Derivatives Test - 49

Result Self Studies

Application of Derivatives Test - 49
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The slope of the tangent to the curve $$x=t^2+3t-8, y=2t^2-2t-5$$ at the point $$(2, -1)$$ is
    Solution
    Given curve 

    $$x = t^2 + 3t - 8$$ and $$y = 2t^2 - 2t - 5$$

    slope of tangent to the curve $$= \dfrac{dy}{dx} = \dfrac{dy/dt}{dx / dt}$$

    $$\therefore \dfrac{dx}{dt} = 2t + 3 , \, \dfrac{dy}{dt} = 4t - 2$$

    $$\dfrac{dy}{dx} = \dfrac{dy/dt}{dx/dt} = \dfrac{4t - 2}{2t + 3}$$

    $$\left(\dfrac{dy}{dx} \right)_{t = 2} $$     $$\dfrac{4(2) - 2}{2(2) + 3} = \dfrac{6}{7}$$
  • Question 2
    1 / -0
    The normal to the curve $$x^2=4y$$ passing through $$(1, 2)$$ is
    Solution
    Curve is $$x^2=4y$$

    Diff wrt to x
    $$2x=\dfrac{4dy}{dx}\Rightarrow \dfrac{dy}{dx}=\dfrac{x}{2}$$

    Slope of normal $$=\dfrac{-1}{dy/dx}=\dfrac{-2}{x}$$
    Let (h, k) be the point where normal and curve intersects
    $$\therefore$$ Slope of normal at (h, k)$$=-2/h$$

    Equation of normal passes through (h, k)
    $$y-y_1=m(x-x_1)$$
    $$y-k=\dfrac{-2}{h}(x-h)$$

    Since normal passes through $$(1, 2)$$
    $$2-k=\dfrac{-2}{h}(1-h)$$
    $$k=2+\dfrac{2}{h}(1-h)$$ ..........$$(1)$$

    since (h, k) lies on the curve $$x^2=4y$$
    $$h^2=4k$$
    $$k=\dfrac{h^2}{4}$$ ....... $$(2)$$

    using $$(1)$$ and $$(2)$$
    $$2+\dfrac{2}{h}(1-h)=\dfrac{h^2}{4}$$
    $$\dfrac{2}{h}=\dfrac{h^2}{4}$$
    $$h=2$$

    Putting $$h=2$$ in $$(2)$$
    $$k=\dfrac{h^2}{4}, k=1$$
    $$h=2$$ and $$k=1$$ putting in equation of normal

    $$\Rightarrow y-k=\dfrac{-2(k-h)}{h}$$

    $$\Rightarrow y-1=\dfrac{-2(x-2)}{2}=y-1=-1(x-2)$$

    $$\Rightarrow y-1=-x+2\\$$
    $$\Rightarrow x+y=2+1\\$$
    $$\Rightarrow x+y=3$$.
  • Question 3
    1 / -0
    Let $$f(x)={x}^{3}+a{x}^{2}+bx+5{\sin}^{2}x$$ be an increasing function on the set $$R$$. Then, $$a$$ and $$b$$ satisfy
    Solution
    $$f(x)=x^3+ax^2+bx+5\sin^2x$$

    $$f^{\prime}(x)=3x^2+2ax+b+5.2\sin x\cos x>0$$

    $$f^{\prime}(x)=3x^2+2ax+b+5\sin 2x >0$$

    $$-1\le \sin 2x\le 1$$

    $$\sin 2x=-1$$

    $$f^{\prime}(x)=3x^2+2ax+b+5(-1)=3x^2+2ax+b-5 \ge 0$$

    $$f^{\prime \prime}=6x+2a$$

    $$6x+2a=0$$ or, $$x=\dfrac{-2a}{6}=\dfrac{-a}{3}$$

    so now,

    $$3\left(\dfrac{-a}{3}\right)^2+2a.\left(\dfrac{-a}{3}\right)+b-5\ge 0$$

    $$\dfrac{a^2}{3}-\dfrac{2a^2}{3}+b-5\ge 0$$

    $$\dfrac{-a^2}{3}+b-5\ge 0$$

    $$a^2-3b+15<0$$
  • Question 4
    1 / -0
    If the function $$f(x)=\cos\left| x \right| -2ax+b$$ increases along the entire number scale, then 
    Solution
    $$\because f(x)=\cos |x|-2ax+b$$ increase in R
    $$=\cos x-2ax+b$$ (as $$\cos (-x)=\cos x$$)
    $$f'(x)=-\sin x-2a$$
    for increasing $$f(x)$$, $$f'(x)\geq 0$$
    $$-\sin x-2a\geq 0$$
    $$\sin x+2a\leq 0$$
    $$2a\leq -\sin x$$ ($$\because$$ maximum value of $$\sin x=1$$)
    $$2a\leq -1$$
    $$a\leq -\dfrac{1}{2}$$.
  • Question 5
    1 / -0
    Function $$f(x)={a}^{x}$$ is increasing on $$R$$, if
    Solution
    $$f(x) = a^x$$

    $$f'(x) = a^x \log a$$

    function is increasing on R.

    $$a^x \log a > 0$$

    $$a^x  > 0 \, \& \, \log a > 0$$

    or 

    $$a^x < 0 \, \& \, \log a < 0$$

    But log function is always positive

    $$\log a > 0$$

    $$\Rightarrow a > 1$$
  • Question 6
    1 / -0
    The function $$f(x)=\cfrac{\lambda \sin x+2\cos x}{\sin x+\cos x}$$ is increasing, if
    Solution
    $$f(x) = \dfrac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}$$

    for increasing

    $$f'(x) > 0$$

    $$\Rightarrow \dfrac{(\sin x + \cos x) (\lambda \cos x - 2 \sin x) - (\lambda \sin x + 2 \cos x)(\cos x - \sin x)}{(\sin x + \cos x)^2} > 0$$

    $$\Rightarrow \dfrac{\lambda - 2}{(\sin x + \cos x)^2} > 0$$

    but $$(\sin x + \cos x)^2 > 0$$

    $$\therefore \lambda - 2 > 0$$

    $$\lambda > 2$$
  • Question 7
    1 / -0
    If the function $$f(x)={x}^{3}-9k{x}^{2}+27x+30$$ is increasing on $$R$$, then 
    Solution
    $$f(x)=x^3-9kx^2+27x+30$$ is increasing on R.
    $$f(x)=x^3-9kx^2+27x+30$$
    $$f'(x)=3x^2-18kx+27$$
    $$=3(x^2-6kx+9)$$
    Given $$f(x)$$ is increasing on R
    $$\Rightarrow f'(x) > 0$$ for all $$x\in R$$
    $$\Rightarrow 3(x^2-6kx+9) > 0$$
    $$(x^2-6kx+9) > 0$$ all $$x\in R$$
    $$ax^2+bx+c > 0$$
    so, $$(-6k)^2-4(1)(9) < 0$$
    $$\Rightarrow 36k^2-36 < 0$$
    $$(k+1)(k-1) < 0$$
    It can be possible when $$(k+1) < 0$$ and $$d(k-1) > 0$$
    $$\Rightarrow k < -1$$ and $$k > 1$$ (not possible)
    or, $$(k+1) > 0$$ and $$(k-1) < 0$$
    $$k > -1$$ and $$k < 1$$
    $$-1 < k < 1$$ so option A is correct.
  • Question 8
    1 / -0
    If the function $$f(x)={x}^{2}-kx+5$$ is increasing on $$[2,4]$$, then 
    Solution
    $$f(x)=x^2-kx+5$$ is increasing in $$x\in [2, 4]$$
    $$f'(x)=2x-k > 0$$
    $$2x > k$$                         $$2\leq x\leq 4$$
    $$k < 2x$$                         $$4\leq 2x \leq 8$$
    k should less than the minimum value of $$2x$$
    $$k < 4$$
    $$k\in (-\infty, 4)$$
    Final Answer.
  • Question 9
    1 / -0
    Function $$f(x)=\log _{ a }{ { x }_{  } } $$ is increasing on $$R$$, if
    Solution
    We have
    $$f(x)=log_ax$$
    Differentiate with respect x, we get
    $$f'(x)=\dfrac{1}{x log a}$$
    $$\because$$ function is increasing on R
    $$\dfrac{1}{x log a} > 0$$
    $$a > 1$$.
  • Question 10
    1 / -0
    The function $$f(x)={x}^{9}+3{x}^{7}+64$$ is increasing on
    Solution
    $$f(x)=x^9+3x^7+64$$
    $$f'(x)=9x^8+21x^6$$
    $$=3x^6(3x^2+7)$$
    $$\because$$ function is increasing
    $$3x^6(3x^2+7) > 0$$
    $$\Rightarrow$$ function is increasing on R.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now