Self Studies

Application of Derivatives Test - 50

Result Self Studies

Application of Derivatives Test - 50
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the function $$f(x)=2\tan x+(2a+1)\log _{ e }{ \left| \sec { x }  \right|  } +(a-2)x$$ is increasing on $$R$$, then
    Solution
    $$f(x)=2tanx+(2a+1)log_e \mid secx \mid +(a-2)x$$
    $$f'(x)=2sec^2x+(2a+1)\dfrac{secxtanx}{secx}+(a-2)1$$
    $$=2sec^2x+(2a+1)tanx+(a-2)$$
    Let $$tanx=t$$
    $$=2(t^2+1)+(2a+1)t+(a-2)>0$$
    $$=2t^2+2at+t+a>0$$
    $$(2a+1)^2-4.2.a<0$$
    $$4a^2+1+4a-8a<0$$
    $$4a^2-4a+1<0$$
    $$4(a-\dfrac{1}{2})^2)<0$$
    $$a=\dfrac{1}{2}$$




  • Question 2
    1 / -0
    Consider the equation $$x^y=e^{x-y}$$
    What is $$\dfrac{d^2y}{dx^2}$$ at $$x=1$$ equal to ?
    Solution
    $${x}^{y} = {e}^{x - y}$$
    Taking $$\log$$ both sides, we have

    $$y \log{x} = \left( x - y \right) \log{e}$$

    $$y \log{x} = x - y ..... \left( 1 \right)$$

    $$\dfrac{y}{x}=1+\log x$$

    At $$x = 1 \Rightarrow y = 1$$

    Differentiating equation $$\left( 1 \right)$$ w.r.t. $$x$$, we have

    $$\cfrac{dy}{dx} \log{x} + \cfrac{y}{x} = 1 - \cfrac{dy}{dx}$$

    $$\Rightarrow \left( 1 + \log{x} \right) \cfrac{dy}{dx} = 1 - \cfrac{y}{x}$$

    $$\Rightarrow \cfrac{dy}{dx} = \cfrac{x - y}{x \left( 1 + \log{x} \right)}$$

    $$\Rightarrow \cfrac{dy}{dx} = \cfrac{y \log{x}}{x \left( 1 + \log{x} \right)}$$

    $$\Rightarrow \cfrac{dy}{dx} = \cfrac{\log{x}}{{\left( 1 + \log{x} \right)}^{2}}$$

    Again differentiating above equation w.r.t. $$x$$, we have

    $$\cfrac{{d}^{2}y}{d{x}^{2}} = \cfrac{{\left( 1 + \log{x} \right)}^{2} \cdot \frac{1}{x} - \log{x} \cdot 2 \left( 1 + \log{x} \right) \frac{1}{x}}{{\left( 1 + \log{x} \right)}^{4}}$$

    $$\Rightarrow \cfrac{{d}^{2}y}{d{x}^{2}} = \cfrac{\frac{1}{x} \left( 1 - \log{x} \right)}{{\left( 1 + \log{x} \right)}^{3}}$$

    At $$x = 1$$,
    $$\cfrac{{d}^{2}y}{d{x}^{2}} = 1$$
  • Question 3
    1 / -0
    Consider the equation $$x^y=e^{x-y}$$
    What is $$\dfrac{dy}{dx}$$ at $$x=1$$ equal to ?
    Solution
    $${x}^{y} = {e}^{x - y}$$

    Taking $$\log$$ both sides, we have

    $$y \log{x} = \left( x - y \right) \log{e}$$

    $$y \log{x} = x - y ..... \left( 1 \right)$$

    At $$x = 1 \Rightarrow y = 1$$

    Differentiating equation $$\left( 1 \right)$$ w.r.t. $$x$$, we have

    $$\cfrac{dy}{dx} \log{x} + \cfrac{y}{x} = 1 - \cfrac{dy}{dx}$$

    $$\Rightarrow \left( 1 + \log{x} \right) \cfrac{dy}{dx} = 1 - \cfrac{y}{x}$$

    $$\Rightarrow \cfrac{dy}{dx} = \cfrac{x - y}{x \left( 1 + \log{x} \right)}$$

    At $$x = 1, \; y = 1$$

    $$\cfrac{dy}{dx} = 0$$
  • Question 4
    1 / -0
    A curve $$y=me^{mx}$$ where $$m > 0$$ intersects y-axis at a point $$P$$.
    What is the slope of the curve at the point of intersection $$P$$ ? 
    Solution
    $$y = m {e}^{mx}, \; m > 0$$

    Therefore,
    Slope $$= \cfrac{dy}{dx} = {m}^{2} {e}^{mx}$$ 

    Substituting $$x = 0$$, we have 

     $$Slope={m}^{2} {e}^{m \cdot 0} = {m}^{2}$$
  • Question 5
    1 / -0
    A curve $$y=me^{mx}$$ where $$m > 0$$ intersects y-axis at a point $$P$$.
    How much angle does the tangent at $$P$$ make with y-axis ? 
  • Question 6
    1 / -0
    The function $$f(x)=4-3x+3x^2-x^3$$ is
    Solution
    $${f}' \left(x\right) = -3+6x-3x^{2} = -3\left(x^{2}-2x+1\right) = -3\left(x-1\right)^{2} \le 0.$$

    $$\Rightarrow {f}' \left(x\right) \le 0$$ for all $$x \in R \Rightarrow f\left(x\right)$$ is decreasing on $$R$$.
  • Question 7
    1 / -0
    The real value of $$k$$ for which $$f(x)=x^2+kx+1$$ is increasing on $$(1, 2)$$, is 
    Solution
    $$f'(x)=(2x+k)$$.

    $$1 < x < 2\Rightarrow 2 < 2x , 4 \Rightarrow 2+k < 2x+k < 4+k \Rightarrow 2+k < f'(x) < 4+k$$

    $$f(x)$$ is increasing $$\Leftrightarrow (2x+k) \ge 0\Leftrightarrow 2+k\ge 0\Leftrightarrow k \ge -2$$

    $$\therefore \ $$ least value of $$k$$ is $$-2$$
  • Question 8
    1 / -0
    $$f(x)=\sin x-kx $$ is decreasing for all $$x \in R$$, when
    Solution

  • Question 9
    1 / -0
    The function $$f(x)=3x+\cos 3x$$ is
    Solution

  • Question 10
    1 / -0
    The slope of the tangent to the curve $$y = \sqrt{4-x^{2}}$$ at the point, where the ordinate and the abscissa are equal , is
    Solution
    Putting $$y=x$$ in $$y = \sqrt{4-x^{2}}$$ , we get $$x = \sqrt{2}, -\sqrt{2}$$.

    So, the point is $$(\sqrt{2}, \sqrt{2})$$.

    Differentiating $$y^{2}+x^{2} = 4$$ w.r.t. x,$$2y \dfrac{dy}{dx}+ 2x = 0$$ or $$\dfrac{dy}{dx}= -\dfrac{x}{y}$$
    $$\Rightarrow at(\sqrt{2}, \sqrt{2}), \dfrac{dy}{dx} = -1$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now