Self Studies

Application of Derivatives Test - 53

Result Self Studies

Application of Derivatives Test - 53
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Directions For Questions

    We are given the curves $$y=\displaystyle \int_{-\infty}^{\infty}f(t)dt $$ through the point $$\left( 0,\dfrac{1}{2}\right) $$ any y=f(x), where f(x)>0 and f(x) is differentiable, $$\forall x \in R$$ through (0,1). Tangents drawn to both the curves at the points with equal abscissae intersect on the same point on the X-axis.

    ...view full instructions

    The function f(x) is 
    Solution
    We have the equations of the tangents of the curve
    $$y=\displaystyle \int_{-∞}^{x} f(t)dt $$ and $$y=f(x)$$ at arbitrary points on them are 
    $$Y-\displaystyle \int_{-∞}^{x} f(t)dt=f(x)(X-x)$$
    and $$Y-f(x)=f'(x)(X-x)$$
    As Eqs.(i) and (ii) intersect at the same point on the X-axis 
    Putting Y=0 and equating x-coordinates, we have
    $$x-\dfrac{f(x)}{f'(x)}=x-\dfrac{\displaystyle \int_{-∞}^{x}f(t)dt}{f(x)}$$
    $$\Rightarrow \dfrac{f(x)}{\displaystyle \int_{-∞}^{x}f(t)dt}=\dfrac{f'(x)}{f(x)}$$
    $$\Rightarrow \displaystyle \int_{-∞}^{x}f(t)dt=cf(x)$$
    As, f(0)=1 $$\Rightarrow\displaystyle \int_{-∞}^{x}f(t)dt=c\times1\Rightarrow c=\dfrac{1}{2}$$
    $$\Rightarrow \displaystyle \int_{-∞}^{x}f(t)dt =\dfrac{1}{2}f(x); $$ differentiating both the sides and integrating and using boundary conditions, we get $$f(x)=e^{2x}; y=2ex$$ is tangent to $$y=e^{2x}$$
    $$\therefore $$ Number of solutions=1
    Clearly, f(x) is increasing for all x.
    $$\therefore lim_{x→∞}(e^{2x})^{e^{-2x}}=1$$

  • Question 2
    1 / -0

    Directions For Questions

    Let $$y=\displaystyle \int_{u(x)}^{v(x)} f(t)dt, $$ let us define $$\dfrac{dy}{dx}$$ as $$\dfrac{dy}{dx}=v'(x)f^2(v(x))-u'(x)f^2(u(x))$$ and the equation of tangent at $$(a,b)$$ and$$ y-b=\left( \dfrac{dy}{dx}\right)_{(a,b)}(x-a).$$

    ...view full instructions

    If $$ f(x) = \displaystyle \int_{1}^{x} e^{t^2/2}(1-t^2)dt, $$ then $$\dfrac{d}{dx} f(x) $$ at x=1 is 
    Solution
    We have, $$f(x)=\displaystyle \int_{1}^{x}e^{t^2/2}(1-t^2)dt$$
    $$f'(x)=[e^{x^2/2}(1-x^2)]^2$$
    $$f'(1)=e^{1/2}.0=0$$
  • Question 3
    1 / -0
    The tangent to the curve $$y = e^{x}$$ drawn at the point $$(c, e^{c})$$ intersects the line joining the points $$(c-1, e^{c-1})$$ and $$(c+1, e^{c+1})$$
    Solution

  • Question 4
    1 / -0

    Directions For Questions

    For certain curves $$y=f(x)$$ satisfying $$\dfrac{d^2y}{dx^2}=6x-4,f(x)$$ has
    local minimum values $$5$$ when $$x=1$$

    ...view full instructions

    Number of critical point for $$y=f(x)$$ for $$x \in [0,2]$$
    Solution
    Integrating, $$\dfrac{d^2y}{dx^2}=6x-4,$$
    we get $$\dfrac{dy}{dx}=3x^2-4x+A$$
    When $$x=1, \dfrac{dy}{dx}=0$$ so that $$A=1$$.
    Hence, $$\dfrac{dy}{dx}=3x^2-4x+1$$
    Integrating we get $$y=x^3-2x^2+x+B$$.
    When $$x=1, y=5$$ so that $$B=5$$
    Thus, we have $$y=x^3-2x^2+x+5$$
    From Eq. (i) we get the critical points $$x=\dfrac{1}{3}, x=1$$
    At the critical point $$x=\dfrac{1}{3}, \dfrac{d^2y}{dx^2} $$ is negative.
    Therefore, at $$x=\dfrac{1}{3},y$$ has a local maximum.
    At $$x=1, \dfrac{d^2y}{dx^2}$$ is positive. THerefore, at $$x=1,y$$ has a local
    minimum.
    Also, $$f(1)=5,f\left(\dfrac{1}{3}\right)=\dfrac{157}{27}, f(0)=5, f(2)=7$$
    Hence, the global value$$=7$$
    And the global minimum value $$=5$$
  • Question 5
    1 / -0
    If the line ax +by + c = 0 is a normal to the curve xy = 1, then 
    Solution

  • Question 6
    1 / -0
    The equation of the curves through the point $$(1,0)$$ and whose slope is $$ \dfrac{y -1}{x^{2} + x} $$ is
    Solution
    Slope $$ = \dfrac{dy}{dx} \implies  \dfrac{dy}{dx} = \dfrac{y - 1}{x^{2} + x} $$
    $$ \implies \dfrac{dy}{y-1} = \dfrac{dx}{x^{2} + x} $$
    $$ \implies \int\dfrac{1}{y-1}dy = \int(\dfrac{1}{x} - \dfrac{1}{x+1})dx + C $$
    $$\implies \log(y-1)=\log(\dfrac{x}{x+1})+\log{c}$$
    $$ \implies \dfrac{(y-1)(x+1)}{x} = k $$
    Putting $$ x=1, y=0 $$, we get $$ k=-2 $$
    The equation is $$ (y-1)(x+1) + 2x = 0 $$
  • Question 7
    1 / -0
    The point of the curve $$ y^2 = x$$ where the tangent makes an angle of $$ \frac { \pi}{4} $$ with x-axis is 
    Solution
    Given curve is  $$ y^2 = x$$
    Therefore as per given condition
    $$ \dfrac{dy}{dx}=\dfrac{1}{2y} = tan \dfrac{\pi}{4}=1 \Rightarrow y=\dfrac{1}{2} \\ \Rightarrow x= \dfrac{1}{4} $$
    Therefore, correct answer is $$ B $$.
  • Question 8
    1 / -0
    The abscissa of the point on the curve $$ 3y=6x- 5x^3 $$ the normal at which passes through origin is :
    Solution
    Let $$ (x_1,y_1) $$ be the point on the given curve $$ 3y=6x-5x^3 $$ at which the normal passes through the origin. Then we have $$ \left( \frac { dy }{ dx }  \right) _{ (x_{ 1 },y_{ 1 }) } =2-5x_1^2 .$$ 
    Again the equation of the normal at $$ (x_1,y_1) $$ passing through the origin gives 
    $$ 2-5x_1^2= \dfrac{-x_1}{y_1}=\dfrac{-3}{6-5x_1^2} $$
    Since. $$ x_1=1 $$ satisfies the equation, therefore, correct answer is $$ (A) .$$
  • Question 9
    1 / -0
    The curve for which the slope of the tangent at any point is equal to the ratio of the abscissa to the ordinate of the point is :
    Solution

    $${\textbf{Step -1: Differentiate slope}}{\textbf{.}}$$

                     $${\text{Given: slope of tangent is equal to ratio of abscissa to the ordinate of the point}}{\text{.}}$$

                     $${\text{Let slope of the tangent be }}\dfrac{{dy}}{{dx}}.$$

                     $$\text{According to the question}$$

                     $$\dfrac{{dy}}{{dx}} = \dfrac{x}{y}$$

    $${\textbf{Step -2: Solve further to find the equation}}{\textbf{.}}$$

                     $${\text{Separating the variables}}{\text{.}}$$

                     $$ydy = xdx$$

                     $${\text{Upon integration we get,}}$$

                     $$\int {ydy = \int {xdx} } $$

                     $$\Rightarrow\dfrac{{{y^2}}}{2} = \dfrac{{{x^2}}}{2} + C$$

                     $$\Rightarrow{y^2} = {x^2} + 2C$$

                     $$ \Rightarrow {x^2} - {y^2} + 2C = 0$$

                     $$ \Rightarrow {x^2} - {y^2} = k$$            $$\textbf{[  k = - 2 C]} $$

    $${\textbf{Hence, the given equation is of a rectangular hyperbola}}{\textbf{.}}$$

  • Question 10
    1 / -0
    The curve $$ y=x^{\frac{1}{5}} $$ has at $$ (0,0) $$
    Solution
    We have, $$ y=x^{1/5} $$
    $$ \Rightarrow \dfrac{dy}{dx}=\dfrac{1}{5}x^{\tfrac{1}{5}-1}=\frac{1}{5}x^{-4/5} $$ 
    $$ \therefore \left( \dfrac { dy }{ dx }  \right) _{ (0,0) }= \tfrac{1}{5} \times (0)^{-4/5}= \infty $$
    So, the curve $$ y=x^{1/5} $$ has vertical tangent at $$ (0,0) $$, which is parallel to y-axis.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now