$$f\left( x \right) =\left( 4a-3 \right) \left( x+\log { 5 } \right) +2\left( a-7 \right) \cot { \cfrac { x }{ 2 } } \sin ^{ 2 }{ \cfrac { x }{ 2 } } $$
$$f'\left( x \right) =\left( 4a-3 \right) \left( 1+0 \right) +2\left( a-7 \right) \left[ \cot { \cfrac { x }{ 2 } } \times 2\sin { \cfrac { x }{ 2 } } \cos { \cfrac { x }{ 2 } } \times \cfrac { 1 }{ 2 } +\sin ^{ 2 }{ \cfrac { x }{ 2 } } \times \left( -\csc ^{ 2 }{ \cfrac { x }{ 2 } } \right) \times \cfrac { 1 }{ 2 } \right] $$
$$f'\left( x \right) =\left( 4a-3 \right) +2\left( a-7 \right) \left[ \cos ^{ 2 }{ \cfrac { x }{ 2 } } -\cfrac { 1 }{ 2 } \right] $$
$$f'\left( x \right) =\left( 4a-3 \right) +2\left( a-7 \right) \times \cfrac { \left( \cos { x } \right) }{ 2 } \quad \left[ \because 1+\cos { x } =2\cos ^{ 2 }{ \cfrac { x }{ 2 } } \right] $$
$$f'\left( x \right) =\left( 4a-3 \right) +\left( a-7 \right) \cos { x } $$
Now, for no critical points
$$f'\left( x \right) \neq 0$$
$$\left( 4a-3 \right) \neq \left( 7-a \right) \cos { x } $$
$$\cos { x } \neq \cfrac { 4a-3 }{ 7-a } $$
$$\therefore \cfrac { 4a-3 }{ 7-a } >1$$$$4a-3>7-a$$
$$5a>10$$
$$a>2$$
and
$$\cfrac { 4a-3 }{ 7-a } <-1$$
$$4a-3<a-7$$
$$3a<-4$$
$$a<-{ 4 }/{ 3 }$$
$$\therefore a\epsilon \left( -\infty ,{ -4 }/{ 3 } \right) \bigcup { (2,\infty ) } $$ is correct.