Self Studies

Application of Derivatives Test - 55

Result Self Studies

Application of Derivatives Test - 55
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The slope of the normal to the curve $$ y = 2x ^{2} + 3 \sin x $$ at $$ x = 0 $$ is 
    Solution
    Given, $$ y = 2x ^{2} + 3 \sin x $$
    slope $$ = \dfrac{dy}{dx} = 4x + 3 \cos x $$
    $$\dfrac{dy}{dy}|_{x=0} = 4 ( 0 ) = 3 $$ 
    slope of normal = $$ -1/ \dfrac{dy}{dx} = -1/3 $$
  • Question 2
    1 / -0
    The line $$ y = x + 1 $$ is a tangent to the curve $$y^{2} = 4 x $$ at the point 
    Solution
    Given,
    $$y^{2} = 4 x \\ \Rightarrow  2y \dfrac{dx}{dx} = 4 \\ \Rightarrow \dfrac{dx}{dy} = 2/y $$ 
    but given that $$ y = x + 1 $$ is a tangent to the curve its slope = $$ 1 ( y = mx +c ) $$
    $$\dfrac 2y =1\implies y=2$$
    $$x=2-1=1$$
    The line $$ y = x + 1 $$ is a tangent to the curve $$y^{2} = 4 x $$ at the point $$(1,2)$$.
  • Question 3
    1 / -0
    The points on the curve $$9 y^{2} = x^{3}$$, where the normal to the curve makes equal intercepts with the axes are ...........
  • Question 4
    1 / -0
    For $$a\in[\pi,2\pi]$$ and $$n\in I$$, the critical points of $$\displaystyle f(x)=\frac{1}{3}\sin a\tan^{3}x+(\sin a - 1 ) \tan x +\sqrt{\frac{a-2}{8-a}}$$ is
    Solution
    $$\displaystyle f(x)=\frac{1}{3}\sin a \tan^{3}(x)+(\sin a - 1 ) \tan x +\sqrt{\dfrac{a-2}{8-a}}$$ 
    $$f'(x)=\sec^{2}x (\sin a \tan^{2}x+\sin a -1)$$
    For critical points, $$\>f'(x)=0$$
    $$\Rightarrow \sec^{2}x (\sin a \tan^{2}x+\sin a -1)=0$$
    $$\Rightarrow \displaystyle \tan^{2}x=\frac{1-\sin a}{\sin a}$$      [$$\because \sec^{2}x=0$$ (not possible)]
    Since, $$a\in [\pi,2\pi]$$
    $$\Rightarrow \displaystyle \frac{1-\sin a}{\sin a} <0$$
    $$\Rightarrow \tan^{2}x <0$$ which is false.
    Hence, no critical points.
  • Question 5
    1 / -0
    The value of a for which the function $$\displaystyle \mathrm{f}(\mathrm{x})=(4\mathrm{a}-3)(\mathrm{x}+\log 5)+2(\mathrm{a}-7)\cot\frac{\mathrm{x}}{2}\sin^{2}\frac{\mathrm{x}}{2}$$ does not possess critical points is
    Solution
    $$f\left( x \right) =\left( 4a-3 \right) \left( x+\log { 5 }  \right) +2\left( a-7 \right) \cot { \cfrac { x }{ 2 }  } \sin ^{ 2 }{ \cfrac { x }{ 2 }  } $$
    $$f'\left( x \right) =\left( 4a-3 \right) \left( 1+0 \right) +2\left( a-7 \right) \left[ \cot { \cfrac { x }{ 2 }  } \times 2\sin { \cfrac { x }{ 2 }  } \cos { \cfrac { x }{ 2 }  } \times \cfrac { 1 }{ 2 } +\sin ^{ 2 }{ \cfrac { x }{ 2 }  } \times \left( -\csc ^{ 2 }{ \cfrac { x }{ 2 }  }  \right) \times \cfrac { 1 }{ 2 }  \right] $$
    $$f'\left( x \right) =\left( 4a-3 \right) +2\left( a-7 \right) \left[ \cos ^{ 2 }{ \cfrac { x }{ 2 }  } -\cfrac { 1 }{ 2 }  \right] $$
    $$f'\left( x \right) =\left( 4a-3 \right) +2\left( a-7 \right) \times \cfrac { \left( \cos { x }  \right)  }{ 2 } \quad \left[ \because 1+\cos { x } =2\cos ^{ 2 }{ \cfrac { x }{ 2 }  }  \right] $$
    $$f'\left( x \right) =\left( 4a-3 \right) +\left( a-7 \right) \cos { x } $$
    Now, for no critical points
    $$f'\left( x \right) \neq 0$$
    $$\left( 4a-3 \right) \neq \left( 7-a \right) \cos { x } $$
    $$\cos { x } \neq \cfrac { 4a-3 }{ 7-a } $$
    $$\therefore \cfrac { 4a-3 }{ 7-a } >1$$$$4a-3>7-a$$
    $$5a>10$$
    $$a>2$$
    and
    $$\cfrac { 4a-3 }{ 7-a } <-1$$
    $$4a-3<a-7$$
    $$3a<-4$$
    $$a<-{ 4 }/{ 3 }$$
    $$\therefore a\epsilon \left( -\infty ,{ -4 }/{ 3 } \right) \bigcup { (2,\infty ) } $$ is correct.
  • Question 6
    1 / -0

    Directions For Questions

    $$\displaystyle \frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{b}^{2}}=1$$ is the equation ot an ellipse. Tangents are drawn to the ellipse and it's auxillary circle at the points where a common ordinate cuts them.

    ...view full instructions

    The greatest inclination between the tangents is
    Solution
    The slope of the tangent to the ellipse $$=-\displaystyle \dfrac{\mathrm{b}}{\mathrm{a}}\cot\theta$$
     The slope of tangent to the circle is $$-\cot\theta$$
    $$\therefore$$ the angle $$\phi$$ between the tangents is given by
    $$\tan\phi=\dfrac{(-\dfrac{\mathrm{b}}{\mathrm{a}}+1)\cot\theta}{1+\dfrac{\mathrm{b}}{\mathrm{a}}\cot^{2}\theta}=\dfrac{(\mathrm{a}-\mathrm{b})}{\mathrm{a}\tan\theta+\mathrm{b}\cot\theta}=\dfrac{\mathrm{a}-\mathrm{b}}{(\sqrt{\mathrm{a}\tan\theta}-\sqrt{\mathrm{b}\cot\theta})^{2}+2\sqrt{\mathrm{a}\mathrm{b}}}$$
    This is maximum when $$\sqrt{\mathrm{a}\tan\theta}-\sqrt{\mathrm{b}\cot\theta}=0$$
    $$\therefore$$ the maximum angle $$=\displaystyle \tan^{-1}(\dfrac{\mathrm{a}-\mathrm{b}}{2\sqrt{\mathrm{a}\mathrm{b}}})$$
  • Question 7
    1 / -0
    A function $$y=f(x)$$ has a second order derivative $$f''(x)=6(x-1)$$ .
    If its graph passes through the point $$(2,1)$$ and at that point the tangent to the graph is $$y=3x-5$$, then the function is
    Solution
    $$f''(x)=6(x-1)$$
    $$ \Rightarrow f'(x) = 3x^2 -6x+k$$...(1)
    Slope of tangent at $$(2,1)$$ is $$3$$.
    $$ \Rightarrow 3=3 \times 2^2 -6 \times 2 +k$$
    $$ \Rightarrow k=3$$...(2)
    From (1) and (2)
    $$f(x)=x^3-3x^2+3x+c$$
    Using $$f(x)=y=1$$ when $$x=2$$, we get
    $$1=2+c \Rightarrow c=-1$$
    Hence, the function is 
    $$f(x)=x^3-3x^2+3x-1$$
    $$ \Rightarrow f(x)=(x-1)^3$$
  • Question 8
    1 / -0
    If $$ f(x) = \displaystyle \frac{x}{{\sin x}}$$ and $$g(x) = \displaystyle \frac{x}{{\tan x}}$$  where $$0 < x \leq 1$$ then in the interval
    Solution
    We know that if $$f'(x)>0$$ then $$f$$ is increasing on that interval and if $$f'(x)<0$$ then $$f$$ is decreasing on the interval.

    Given $$f(x)=\dfrac{x}{sinx}$$

    $$\implies f'(x)=\dfrac{sinx-xcosx}{sin^2x}=0$$

    $$\implies sinx-xcosx=0$$

    $$\implies x=\dfrac{sinx}{cosx}=tanx$$

    In the interval $$(0,1)$$ there is no solution for $$x=tanx$$

    Therefore, $$f'(x)>0$$

    Hence, $$f(x)$$ is an increasing function.

    Given $$g(x)=\dfrac{x}{tanx}$$

    $$\implies g'(x)=\dfrac{tanx-xsec^2x}{tan^2x}=0$$

    $$\implies tanx-xsec^2x=0$$

    $$\implies x=\dfrac{sec^2x}{tanx}=\dfrac{1}{sinxcosx}$$

    In the interval $$(0,1)$$, $$g(x)$$ is not an increasing function.

  • Question 9
    1 / -0
    A curve passes through $$(2, 0)$$ and the slope of the tangent at any point $$(x, y)$$ is $$x^2 -2x$$ for all values of $$x$$. The point of minimum ordinate on the curve where $$x > 0$$ is $$(a, b)$$'
    Then find the value of $$a + 6b$$.
    Solution
    $$\dfrac {dy}{dx} = x^2 - 2x$$
    $$y = \dfrac {x^3}{3} - x^2 + C$$
    Passing through (2, 0)
    $$\Rightarrow C = \dfrac {4}{3}$$
    $$\therefore y = \dfrac {x^3}{3} - x^2 + \dfrac {4}{3}$$
    $$y' = x^2 - 2x = x(x - 2)$$
    For maxima or minima, $$y'=0$$
    $$ \Rightarrow x= 0,2$$
    $$y''>0$$ at $$x=2$$
    At x = 2, y takes the minimum value.
    $$\therefore $$ minimum value of y is $$= \dfrac {8}{3} - 4 +\dfrac {4}{3} = 0$$
    $$\therefore a = 2, b = 0$$
    $$a + 6b = 2$$
  • Question 10
    1 / -0
    Suppose $$a,b,c$$ are such that the curve $$y = ax^2 + bx + c$$ is tangent to $$y = 3x -3$$ at $$(1, 0)$$ and is also tangent to $$y = x + 1$$ at $$(3, 4)$$ then the value of $$(2a -b -4c)$$ equals
    Solution
    $$y = ax^2 + bx + c $$
    Since $$(1,0)$$ lies on the curve
    $$ \Rightarrow a + b + c = 0 $$ ...... (i)
    Slope of curve $$\displaystyle =\frac {dy}{dx} = 2ax + b$$
    Slope of curve at (1,0)$$=2a+b$$
    Slope of curve at (3,4)$$=6a+b$$
    Slope of tangent $$y=3x-3$$ is 3
    Slope of tangent $$y=x+1$$ is 1
    $$(\dfrac {dy}{dx})_{x=1} = 3$$ and $$(\dfrac {dy}{dx})_{x=3} = 1$$
    $$2a + b = 3$$ .... (ii)
    $$6a + b = 1$$ .... (iii)
    on solving we get a $$= -\dfrac {1}{2}, b = 4, c = -\dfrac {7}{2}$$
    $$\therefore 2a - b - 4c = -1 -4 + 14 = 9$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now