Self Studies

Application of Derivatives Test - 56

Result Self Studies

Application of Derivatives Test - 56
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A function $$y=f(x)$$ has a second-order derivative $$f''(x)=6(x-1)$$. If its graph passes through the point $$(2,1)$$ and at the point tangent to the graph is $$y=3x-5$$, then the value of $$f(0)$$ is 
    Solution
    $$f''(x)=6x-6$$
    $$\int { f''(x)dx } =\int { (6x-6)dx } $$
    $$\Rightarrow f'(x)=3x^{2}-6x+C$$
    Since, it passes through (2,1) and tangent is $$y=3x-5$$
    $$\Rightarrow C=3$$
    So, $$f'(x)=3x^{2}-6x+3$$
    $$\int { f'(x)dx } =\int { (3{ x }^{ 2 }-6x+3)dx } $$
    $$\Rightarrow f(x)=x^{3}-3x^{2}+3x+C_1$$
    Since, it passes through $$ (2,1)$$
    $$\Rightarrow C_1=-1$$
    Hence, $$f(x)=x^{3}-3x^{2}+3x-1$$
    $$f(0)=-1$$
  • Question 2
    1 / -0
    The angle made by the tangent of the curve $$x=a (t+\sin t \cos t)$$, $$y=a(1+sint)^2$$ with the $$x- axis$$ at any point on it is
    Solution
    $$x=a (t+sin t cos t)$$
    $$\dfrac{dx}{dt}=2acos^{2}t$$
    $$y=a(1+sint)^2$$
    $$\dfrac{dy}{dt}=2a(cost+costsint)$$
    $$\Rightarrow \displaystyle \dfrac{dy}{dx}=\dfrac{1+sint}{cost}$$
               $$\displaystyle  = \dfrac{(cos\dfrac{t}{2}+sin\dfrac{t}{2})^{2}}{cos^{2}\dfrac{t}{2}-sin^{2}\dfrac{t}{2}}$$
                 $$\displaystyle = \dfrac{1+tan{\dfrac{t}{2}}}{1-tan{\dfrac{t}{2}}}$$
                 $$\displaystyle =tan(\dfrac{\pi}{4}+\dfrac{t}{2})$$
    Slope of tangent to the curve $$= tan(\dfrac{\pi}{4}+\dfrac{t}{2})$$
    So, the angle made by the tangent to the curve with the x-axis $$=\dfrac{\pi}{4}+\dfrac{t}{2}$$ or $$\dfrac{1}{4}(\pi+2t)$$

  • Question 3
    1 / -0
    The value of $$x$$ at which tangent to the curve $$y=x^3-6x^2+9x+4,   0\leq x \leq 5$$ has maximum slope is
    Solution
    $$y=x^3-6x^2+9x+4$$
    $$\dfrac{dy}{dx}=3x^2-12x+9$$

    Slope of tangent, 
    $$m=f(x)=3x^2-12x+9$$

    For maxima or minima, 
    $$f'(x)= 0$$
    $$\Rightarrow 6x-12=0$$
    $$\Rightarrow  x=2$$.

    Now, 
    $$m(0)=9,  m(2)=-3$$ and $$m(5)=24$$
    Hence,
    The maximum value is attained at $$x = 5$$.

    Hence, option D.
  • Question 4
    1 / -0
    The point on the curve $$y^{2} = x ,$$ the tangent at which makes an angle of $$45^{0}$$ with positive direction of $$x -$$ axis will be given by
    Solution
    Given equation of curve is $$y^{2} = x$$
    $$\displaystyle \frac{dy}{dx}=\frac{1}{2y}$$
    Slope of tangent $$=\dfrac{1}{2y}$$
    Also, given slope of tangent $$=tan 45^{\circ}$$
    $$\displaystyle\frac{1}{2y}=1\Rightarrow y=\frac{1}{2}$$
    $$\displaystyle \Rightarrow x=\frac{1}{4}$$
    Hence, the required point is  $$\left ( \dfrac{1}{4},\dfrac{1}{2} \right )$$
  • Question 5
    1 / -0
    If the curve represented parametrically by the equations $$x=2 \ln\cot t+1$$ and $$y=\tan t+ \cot t$$
    Solution
    $$x=2 \ln\cot t+1$$
    $$\displaystyle \frac{dx}{dt}=-\frac{2cosec^{2}t}{\cot t}=-\frac{2}{\sin t\cos t}$$
     $$y=\tan t+ \cot t$$
    $$\displaystyle \frac{dy}{dt}=sec^{2}t-cosec^{2}t=\frac{sin^{2}t-cos^{2}t}{sin^{2}t cos^{2}t}$$
    $$\Rightarrow \displaystyle \frac{dy}{dx}=-\frac{sin^{2}t-cos^{2}t}{sin2t}$$
    $$\Rightarrow \displaystyle \frac{dy}{dx}=\cot 2t$$
    Slope of tangent at $$t=\dfrac{\pi}{4}$$ is 0.
    Hence, tangent is parallel to x-axis.
  • Question 6
    1 / -0
    The period of oscillation $$T$$ of a pendulum of length $$l$$ at a place of acceleration due to gravity $$g$$ is given by $$T=2\pi \sqrt {\dfrac {l}{g}}$$. If the calculated length is $$0.992$$ times the actual length and if the value assumed for $$g$$ is $$1.002$$ times its actual value, the relative error in the computed value of $$T$$ is
    Solution
    Relative error will calculate by
    $$\dfrac{\Delta T}{T}=\dfrac{1}{2}\left[\dfrac{\Delta L}{L}-\dfrac{\Delta g}{g}\right]$$

    $$\dfrac{\Delta T}{T}=\dfrac{1}{2}\left[\dfrac{0.992L}{L}-\dfrac{1.002 g}{g}\right]$$

    $$\Delta T=-0.005T$$

  • Question 7
    1 / -0
    The focal length of a mirror is given by $$\dfrac {1}{v}-\dfrac {1}{u}=\dfrac {2}{f}$$. If equal errors ($$\alpha$$) are made in measuring $$u$$ and $$v$$, then the relative error in $$f$$ is
    Solution
    Given, $$\displaystyle \dfrac {1}{v}-\dfrac {1}{u}=\dfrac {2}{f}$$
    $$\Rightarrow \displaystyle -\dfrac {\Delta v}{v^2}+\dfrac {\Delta u}{u^2}=-\dfrac {2\Delta f}{f^2}$$
    Since, given equal errors in measuring u and v i.e.$$\Delta u=\Delta v=\alpha$$
    $$\Rightarrow {\alpha}\left(\dfrac{1}{u}-\dfrac{1}{v}\right)\left(\dfrac{1}{u}+\dfrac{1}{v}\right)=-\dfrac {2\Delta f}{f^2}$$
    But, $$\dfrac{1}{v}-\dfrac{1}{u}=\dfrac{2}{f}$$
    $$\Rightarrow\displaystyle \frac{ \Delta f}{f}={\alpha}\left(\dfrac{1}{u}+\dfrac{1}{v}\right)$$
    Hence, correct option is B
  • Question 8
    1 / -0
    The tangent of the acute angle between the curves $$y=|x^2-1| $$ and $$y=\sqrt {7-x^2}$$ at their points of intersection is
    Solution
    The given curves are $$y=|x^{2}-1|$$ and $$y=\sqrt{7-x^2}$$
    To find the point of intersection, let us equate both the curves.  
    $$|x^{2}-1|=\sqrt{7-x^2}$$
    Squaring on both sides gives us $$x^{4}-x^{2}-6=0$$
    $$(x^2-3)(x^2+2) =0 $$
    On solving above quadratic equation, we get $$x^{2}=3$$
    The point of intersection is $$\left(\pm \sqrt{3},2\right)$$
    The slope of the tangent to $$y=|x^{2}-1|$$ at the point $$\left( \sqrt{3},2\right)$$is
    $$m_{1}=\displaystyle\dfrac{dy}{dx}=2x=2\sqrt{3}$$
    The slope of tangent to $$y=\sqrt{7-x^2}$$ at the point $$\left(\sqrt{3},2\right)$$is
    $$m_{2}=\displaystyle\dfrac{dy}{dx}=\dfrac{-x}{\sqrt{7-x^2}}=\dfrac{-\sqrt{3}}{2}$$
    Let $$\theta$$ be the acute angle between the two tangents. 
    $$\displaystyle\tan\theta = \dfrac{m_{1}-m_{2}}{1+m_{1}m_{2}}$$ 
    $$\Rightarrow \displaystyle\tan\theta = \dfrac{-5\sqrt{3}}{4}$$
    $$\therefore$$The tangent of the acute angle between the curves is $$\displaystyle\dfrac{5\sqrt{3}}{4}$$ . 
    Hence, option C is correct. 
  • Question 9
    1 / -0
    Consider the function $$f(x)= \begin{cases} x \sin \displaystyle \frac {\pi}{x}, for  \ x>0\\ 0,                   for \   x=0 \end{cases}$$. Then, the number of points in $$(0,1)$$ where the derivative $$f'(x)$$ vanishes is
    Solution

  • Question 10
    1 / -0
    The area of a triangle is computed using the formula $$S=\dfrac {1}{2}$$ bc sin A. If the relative errors made in measuring b, c and calculating S are respectively $$0.02$$, $$0.01$$ and $$0.13$$ the approximate error in A when $$A=\pi /6$$ is
    Solution
    Error formula for given equation is
    $$\dfrac{\Delta s}{s}=\dfrac{\Delta b}{b}+\dfrac{\Delta c}{c}+\dfrac{\Delta sinx}{sinx}$$
    $$0.13=0.02+0.01+\dfrac{\Delta sinx}{1/2}$$
    $$\Delta sinx=0.05$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now