Self Studies

Application of Derivatives Test - 57

Result Self Studies

Application of Derivatives Test - 57
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the circle $$x^2+y^2+2gx+2fy+c=0$$ is touched by $$y=x$$ at P such that OP = $$6\sqrt{2}$$
    then the value of c is
    Solution
    Let the point of contact be $$x_{1},y_{1}$$
    However it lies on the line $$y=x$$
    Hence
    $$x_{1}=y_{1}$$
    Applying distance formula, we get
    $$\sqrt{x_{1}^2+x_{1}^2}=6\sqrt{2}$$
    $$2x_{1}^2=72$$
    $$x_{1}=6$$ ...(positive, since it lies on y=x.)
    Differentiating the equation of circle with respect to x.
    $$2x+2yy'+2g+2fy'=0$$
    Now $$y'=1$$ since $$y'$$ is the slope of the line $$y=x$$.
    By substituting, we get
    $$x+y=-(g+f)$$
    Now $$x_{1}=y_{1}=6$$
    Hence
    $$12=-(g+f)$$ ...(i)
    Substituting $$x=y=6$$ in the equation of the circle, we get
    $$36+36+2(6)(g+f)+c=0$$
    $$72+12(-12)+c=0$$
    $$c=144-72$$
    $$c=72$$
  • Question 2
    1 / -0
    The abscissas of points $$P$$ and $$Q$$ on the curve $$y=e^x+e^{-x}$$ such that tangents at $$P$$ and $$Q$$ make $$60^{\circ}$$ with the $$x$$-axis are
    Solution
    $$y=e^{x}+e^{-x}$$
    $$\displaystyle\frac{dy}{dx}=e^{x}-e^{-x}=\frac{e^{2x}-1}{e^{x}}$$
    Let P$$(x_{1},y_{1})$$ and Q$$(x_2,y_2)$$ be the points on the given curve.
    Slope of tangent at P is $$\displaystyle m_1=\frac{e^{2x_{1}}-1}{e^{x_{1}}}$$
    $$\Rightarrow \displaystyle \sqrt{3}=\frac{e^{2x_{1}}-1}{e^{x_{1}}}$$
    $$\displaystyle\Rightarrow e^{2x_1}-\sqrt{3}e^{x}-1=0$$
    $$\displaystyle\Rightarrow (e^{x_1}-\frac{\sqrt{3}}{2})^{2}=\frac{7}{4}$$
    $$\displaystyle\Rightarrow e^{x_1}=\pm\frac{\sqrt{7}}{2}+\frac{\sqrt{3}}{2}$$
    $$\displaystyle\Rightarrow {x_1}=ln{(\frac{\sqrt{7}}{2}+\frac{\sqrt{3}}{2})}$$ as logarithm of negative numbers is not defined.
    Similarly, $$\displaystyle\Rightarrow {x_2}=ln{(\frac{\sqrt{7}}{2}+\frac{\sqrt{3}}{2})}$$ as it makes same angle,$$60^{0}$$ with x-axis.
  • Question 3
    1 / -0
    The graphs $$y=2x^3-4x+2$$ and $$y=x^3+2x-1$$ intersect at exactly 3 distinct points. The slope of the line passing through two of these points
    Solution
    Given equation of curves 
    $$y=2x^3-4x+2$$
    $$y=x^3+2x-1$$ 
    Let $$(x_{1},y_{1})$$ be a point of intersection of the curves.
    $$\Rightarrow y_{1}=2x_{1}^3-4x_{1}+2$$ 
    And $$ y_{1}=x_{1}^3+2x_{1}-1$$ 
    $$\Rightarrow y_1=8x_{1}-4$$
    Let $$(x_{2},y_{2})$$ be another point of intersection of the curves.
    $$\Rightarrow y_{2}=2x_{2}^3-4x_{2}+2$$ 
    And $$y_{2}=x_{2}^3+2x_{2}-1$$ 
    $$\Rightarrow y_2=8x_{2}-4$$
    Now, slope $$= \displaystyle \dfrac{y_2-y_1}{x_2-x_1}$$
    $$\Rightarrow m =\displaystyle \dfrac{8(x_2-x_1)}{x_2-x_1}$$
    $$\Rightarrow m=8$$
  • Question 4
    1 / -0
    Let $$S$$ be a square with sides of length $$x$$. If we approximate the change in size of the area of $$S$$ by $$\displaystyle h.\frac{dA}{dx}|_{x=x_0}$$, when the sides are changed from $$x_0$$ to $$x_o+h$$, then the absolute value of the error in our approximation, is
    Solution
    $$ A=x^{2}$$
    $$\displaystyle \dfrac{dA}{dx}=2x$$
    Given , approximate change in size of area $$=\Delta A = \displaystyle h.\dfrac{dA}{dx}|_{x=x_0}$$
    $$\Rightarrow \Delta A=2x_{0}h$$
    Also, $$(A+\Delta A)-A=(x_{0}+h)^{2}-{x_0}^{2}$$
                                        $$ =2x_{0}h+h^{2}$$
    Hence, absolute value of error in our approximation is $$h^{2}$$
  • Question 5
    1 / -0
    The number of points on the curve $$x^{3/2}+y^{3/2}=a^{3/2}$$, where the tangents are equally inclined to the axes, is
    Solution
    If the tangents are equally inclined to the axes we get $$y'_{x,y}=1$$.
    Therefore 
    $$\dfrac{3}{2}\sqrt{x}+\dfrac{3}{2}\sqrt{y}.y'=0$$

    $$y'=1$$ implies 
    $$\sqrt{x}+\sqrt{y}=0$$

    $$\sqrt{x}=-\sqrt{y}$$

    $$x=y$$.
    $$x_{1}=y_{1}$$.
    Substituting in the equation we get 
    $$2x^{\frac{3}{2}}=a^{\frac{3}{2}}$$

    $$x=\dfrac{a}{2^{\frac{2}{3}}}$$
    Therefore 
    $$(x_{1},y_{1})=\left(\dfrac{a}{2^{\frac{2}{3}}},\dfrac{a}{2^{\frac{2}{3}}}\right)$$
    Therefore there exists only one point.
  • Question 6
    1 / -0
    The point (s) on the curve $$\displaystyle y^{3}+3x^{2}= 12y,$$ where the tangent is vertical (i.e., parallel to the y-axis),  is / true
    Solution
    We require the point where $$\dfrac{dx}{dy}=0$$
    Or 
    $$3y^{2}.dy+6x.dx=12dy$$
    Or 
    $$dy(3y^{2}-12)=-6xdx$$
    Or 
    $$\dfrac{-dx}{dy}=\dfrac{3y^{2}-12}{6}$$
    $$=0$$
    Hence
    $$3y^{2}-12=0$$
    $$y^{2}-4=0$$
    $$y=\pm 2$$
    Now $$y=-2$$ does not satisfy the equation the curve.
    Substituting in the equation of the curve, y=2,
    $$8+3x^{2}=24$$
    $$3x^{2}=16$$
    $$x=\pm\dfrac{4}{\sqrt{3}}$$.
  • Question 7
    1 / -0
    Let the equation of a curve be $$x=a\left ( \theta +\sin \theta  \right )$$, $$y=a\left ( 1-\cos \theta  \right )$$. If $$\theta $$ changes at a constant rate $$k$$ then the rate of change of slope of the tangent to the curve at $$\displaystyle \theta =\frac{\pi }{2}$$ is
    Solution
    As $$\theta $$ change with constant rate $$\Rightarrow \dfrac{d\theta}{dt}=k$$
    $$x=a\left( \theta +sin\theta  \right) $$
    $$\cfrac { dx }{ d\theta  } =a\left( 1+cos\theta  \right) $$
    $$y=a\left( 1-cos\theta  \right) $$
    $$\cfrac { dy }{ d\theta  } =asin\theta $$

    Then, $$\cfrac { dy }{ dx } =\cfrac { asin\theta  }{ a\left( 1+cos\theta  \right)  } $$
    Rate of change of slope $$=\dfrac{d}{dt}. \dfrac{dy}{dx} = \dfrac{1}{1+\cos\theta}.\dfrac{d\theta}{dt} = k $$ , at $$\theta =\dfrac{\pi}{2}$$
  • Question 8
    1 / -0
    The angle made by the tangent of the curve $$\displaystyle x = a(t + \sin t \cos t); y = a (1 + \sin t)^2$$ with the x-axis at any point on it is
    Solution
    $$x=a\left(t+\sin{t}\cos{t}\right)$$
    $$\dfrac{dx}{dt}=a\left(1+{\cos}^{2}{t}-{\sin}^{2}{t}\right)$$
    $$\quad \ =a\left(1+\left({\cos}^{2}{t}-{\sin}^{2}{t}\right)\right)$$
    $$\dfrac{dx}{dt}=a\left(1+\cos{2t}\right)$$

    $$y=a{\left(1+\sin{t}\right)}^{2}$$
    $$\dfrac{dy}{dt}=2a\left(1+\sin{t}\right)\cos{t}$$
    $$\dfrac{dy}{dt}=2a\cos{t}\left(1+\sin{t}\right)$$

    $$\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}\\$$
    $$=\dfrac{2a\cos{t}\left(1+\sin{t}\right)}{a\left(1+\cos{2t}\right)}\\$$
    $$=\dfrac{2\cos{t}\left(1+\sin{t}\right)}{2{\cos}^{2}{t}}\\$$
    $$=\dfrac{\left(1+\sin{t}\right)}{\cos{t}}\\$$
    $$=\dfrac{\left({\cos}^{2}{\dfrac{t}{2}}+{\sin}^{2}{\dfrac{t}{2}}+2\sin{\dfrac{t}{2}}\cos{\dfrac{t}{2}}\right)}{{\cos}^{2}{\dfrac{t}{2}}-{\sin}^{2}{\dfrac{t}{2}}}\\$$
    $$=\dfrac{{\left(\cos{\dfrac{t}{2}}+\sin{\dfrac{t}{2}}\right)}^{2}}{{\cos}^{2}{\dfrac{t}{2}}-{\sin}^{2}{\dfrac{t}{2}}}\\$$
    $$=\dfrac{\left(\cos{\dfrac{t}{2}}+\sin{\dfrac{t}{2}}\right)}{\left(\cos{\dfrac{t}{2}}-\sin{\dfrac{t}{2}}\right)}\\$$
    $$=\dfrac{1+\tan{\dfrac{t}{2}}}{1-\tan{\dfrac{t}{2}}}\\$$
    $$=\dfrac{\tan{\dfrac{\pi}{4}}+\tan{\dfrac{t}{2}}}{1-\tan{\dfrac{\pi}{4}}\tan{\dfrac{t}{2}}}\\$$
    $$=\tan{\left(\dfrac{\pi}{4}+\dfrac{t}{2}\right)}\\$$

    If $$\theta$$ is the angle which the tangent at any point $$t$$ makes with the $$X$$ axis
    then $$\tan{\theta}=\tan{\left(\dfrac{\pi}{4}+\dfrac{t}{2}\right)}$$

    $$\therefore\,\theta=\dfrac{\pi}{4}+\dfrac{t}{2}=\dfrac{1}{4}\left(\pi+2t\right)$$
  • Question 9
    1 / -0

    Directions For Questions

    The number of points of intersection of the graphs of the functions $$y=f\left ( x \right )$$ and $$y=\phi \left ( x \right )$$ give the number of solutions of the equation $$f\left ( x \right )-\phi \left ( x \right )=0$$. Let $$f\left ( x \right )=ke^x$$ and $$\phi \left ( x \right )=x$$, where k is a real constant.

    ...view full instructions

    The positive value of $$k$$ for which $$ke^x-x=0$$ has only one real solution is 
    Solution
    $$ke^{ x }-x=0$$ will have only one solution when $$g(x)=x$$ is tangent to $$f(x)=ke^{x}$$
    let $$P(a,b)$$ be a point on $$f(x)$$ and it also satisfy $$g(x)$$
    Therefore, $$ke^{ a }=a$$       ...(1)
    slope of $$g(x)=$$slope of $$f(x)$$ at point P
    $$\Rightarrow 1=\dfrac { dy }{ dx } $$at point P$$=k{ e }^{ a }$$
    From (1), we get $$a=1$$
    Therefore, $$k=1/e$$

    Ans: A
  • Question 10
    1 / -0
    Let $$\displaystyle \:f : R\rightarrow R$$ be a function such that $$\displaystyle \:f \left ( x \right )= ax+3\sin x+4\cos x.$$ Then $$\displaystyle \:f \left ( x \right )$$ is invertible if
    Solution
    $$f(x)=ax+3sinx+4cosx$$
    $$f'(x)=a+3cosx-4sinx$$
    $$-5\leq3cosx-4sinx \geq5 $$
    hence $$a\varepsilon (-5,5)$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now