$$x=a\left(t+\sin{t}\cos{t}\right)$$
$$\dfrac{dx}{dt}=a\left(1+{\cos}^{2}{t}-{\sin}^{2}{t}\right)$$
$$\quad \ =a\left(1+\left({\cos}^{2}{t}-{\sin}^{2}{t}\right)\right)$$
$$\dfrac{dx}{dt}=a\left(1+\cos{2t}\right)$$
$$y=a{\left(1+\sin{t}\right)}^{2}$$
$$\dfrac{dy}{dt}=2a\left(1+\sin{t}\right)\cos{t}$$
$$\dfrac{dy}{dt}=2a\cos{t}\left(1+\sin{t}\right)$$
$$\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}\\$$
$$=\dfrac{2a\cos{t}\left(1+\sin{t}\right)}{a\left(1+\cos{2t}\right)}\\$$
$$=\dfrac{2\cos{t}\left(1+\sin{t}\right)}{2{\cos}^{2}{t}}\\$$
$$=\dfrac{\left(1+\sin{t}\right)}{\cos{t}}\\$$
$$=\dfrac{\left({\cos}^{2}{\dfrac{t}{2}}+{\sin}^{2}{\dfrac{t}{2}}+2\sin{\dfrac{t}{2}}\cos{\dfrac{t}{2}}\right)}{{\cos}^{2}{\dfrac{t}{2}}-{\sin}^{2}{\dfrac{t}{2}}}\\$$
$$=\dfrac{{\left(\cos{\dfrac{t}{2}}+\sin{\dfrac{t}{2}}\right)}^{2}}{{\cos}^{2}{\dfrac{t}{2}}-{\sin}^{2}{\dfrac{t}{2}}}\\$$
$$=\dfrac{\left(\cos{\dfrac{t}{2}}+\sin{\dfrac{t}{2}}\right)}{\left(\cos{\dfrac{t}{2}}-\sin{\dfrac{t}{2}}\right)}\\$$
$$=\dfrac{1+\tan{\dfrac{t}{2}}}{1-\tan{\dfrac{t}{2}}}\\$$
$$=\dfrac{\tan{\dfrac{\pi}{4}}+\tan{\dfrac{t}{2}}}{1-\tan{\dfrac{\pi}{4}}\tan{\dfrac{t}{2}}}\\$$
$$=\tan{\left(\dfrac{\pi}{4}+\dfrac{t}{2}\right)}\\$$
If $$\theta$$ is the angle which the tangent at any point $$t$$ makes with the $$X$$ axis
then $$\tan{\theta}=\tan{\left(\dfrac{\pi}{4}+\dfrac{t}{2}\right)}$$
$$\therefore\,\theta=\dfrac{\pi}{4}+\dfrac{t}{2}=\dfrac{1}{4}\left(\pi+2t\right)$$