Self Studies

Application of Derivatives Test - 58

Result Self Studies

Application of Derivatives Test - 58
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Consider the curve represented parametrically by the equation
    $$\displaystyle x = t^3 - 4t^2 - 3t$$ and $$\displaystyle y = 2t^2 + 3t - 5$$ where $$\displaystyle t \: \epsilon \: R$$.
    If $$H$$ denotes the number of point on the curve where the tangent is horizontal and $$V$$ the number of point where the tangent is vertical then
    Solution
    $$\dfrac{dx}{dt} = 3t^2-8t-3$$
    $$\dfrac{dy}{dt} = 4t+3$$
    $$\Rightarrow \dfrac{dy}{dt} = \dfrac{4t+3}{3t^2-8t-3}$$
    clerarly denominator has two roots and numerator has single root
    Hence given curve will have two vertical tangent and one horizontal tangent
    $$\Rightarrow H =1 , V =2$$ 
  • Question 2
    1 / -0
    For a $$\displaystyle a\epsilon \left [ \pi , 2\pi  \right ],$$ the function $$\displaystyle f\left ( x \right )= \frac{1}{3}\sin a \tan ^{3}x+\left ( \sin a-1 \right )\tan x+ \frac{\sqrt{a-2}}{\sqrt{8-a}}$$
    Solution
    $$f\left( x \right) =\dfrac { 1 }{ 3 } \sin  a\tan ^{ 3 } x+\left( \sin  a-1 \right) \tan  x+\dfrac { \sqrt { a-2 }  }{ \sqrt { 8-a }  } $$
    $$f'\left( x \right) =\sin { a } \tan ^{ 2 }{ x } \sec ^{ 2 }{ x } +\left( \sin  a-1 \right) \sec ^{ 2 }{ x } =\sec ^{ 2 }{ x } \left( \sin { a } \left( \sec ^{ 2 }{ x } -1 \right) +\left( \sin  a-1 \right)  \right) $$
    $$\Rightarrow f'\left( x \right) =\sec ^{ 2 }{ x } \left( \sin { a } \sec ^{ 2 }{ x } -1 \right) $$
    for critical points $$f'(x)=0$$
    $$\Rightarrow \sec ^{ 2 }{ x } =0$$
            $$\Rightarrow x\in \emptyset $$
    or $$\sec ^{ 2 }{ x } =\dfrac { 1 }{ \sin { a }  } $$ 
            since, for $$a\epsilon \left[ \pi ,2\pi  \right], \quad \sin { a } <0$$
            Therefore, $$x\in \emptyset$$
    Thus, $$f(x)$$ have no critical points.

    Ans: B
  • Question 3
    1 / -0
    The point(s) on the curve $$y^{3}+3x^{2}=12y$$ the tangent is vertical is (are)
    Solution
    $$3y^{2}.y'+6x=12y'$$
    Or 
    $$y'(3y^{2}-12)=-6x$$
    Or 
    $$y'(y^{2}-4)=-2x$$
    Or 
    $$y'=\dfrac{-2x}{y^{2}-4}$$
    Hence for the tangent to be vertical
    $$y^{2}-4=0$$
    $$y=\pm2$$
    Substituting $$y=2$$, we get 
    $$3x^{2}=12y-y^{3}$$
    $$=24-8$$
    $$=16$$
    Hence
    $$x=\dfrac{\pm4}{\sqrt{3}}$$
    $$y=-2$$ gives 
    $$3x^{2}=-16$$ 
    This is not possible.
    Hence the required point is 
    $$(\dfrac{\pm4}{\sqrt{3}},2)$$.
  • Question 4
    1 / -0
    The coordinates of the point $$P$$ on the curve $$y^{2}= 2x^{3}$$ the tangent at which is perpendicular to the line $$4x-3y + 2 = 0$$, are given by
    Solution
    $$4x-3y+2=0$$
    Or 
    $$3y=4x+2$$
    Or 
    $$y=\dfrac{4}{3}x+\dfrac{2}{3}$$.
    Hence slope of the tangent will be 
    $$=\dfrac{-3}{4}$$
    Now 
    $$\dfrac{dy}{dx}=\dfrac{-3}{4}$$
    $$y=\pm\sqrt{2}.x^{\frac{3}{2}}$$
    Hence
    $$\dfrac{dy}{dx}$$

    $$=\pm\sqrt{2}.\dfrac{3}{2}.x^{\frac{1}{2}}$$

    $$=\dfrac{-3}{4}$$

    Or 
    $$-\sqrt{2}.\dfrac{3}{2}.x^{\dfrac{1}{2}}=\dfrac{-3}{4}$$
    Or 
    $$2\sqrt{2}.x^{\dfrac{1}{2}}=1$$
    Or 
    $$x=\dfrac{1}{8}$$.
    Hence
    $$y=-\sqrt{2}.x^{\dfrac{3}{2}}$$
    $$=-\sqrt{2}.\dfrac{1}{16\sqrt{2}}$$
    $$=-\dfrac{1}{16}$$
    Hence the co-ordinates are  $$(\dfrac{1}{8},\dfrac{-1}{16})$$
  • Question 5
    1 / -0
    Find the co-ordinates of the point (s) on the curve $$\displaystyle y= \frac{x^{2}-1}{x^{2}+1}, x> 0$$ such that tangent at these point (s)have the greatest slope.
    Solution
    $$\displaystyle y= \dfrac{x^{2}-1}{x^{2}+1}= \dfrac{x^{2}+1-2}{x^{2}+1}= 1-\dfrac{2}{x^{2}+1}$$

    $$\Rightarrow y=1-\dfrac{2}{x^{2}+1}$$

    S=slope $$\displaystyle = \dfrac{dy}{dx}= \dfrac{4x}{\left ( x^{2}+1 \right )^{2}}$$

    For maximum and minimum of S, $$\displaystyle \dfrac{dS}{dx}= 0$$

    $$\displaystyle \dfrac{dS}{dx}= 4\dfrac{\left ( x^{2}+1 \right )^{2}.1-x.2\left ( x^{2}+1 \right ).2x}{\left ( x^{2}+1 \right )^{4}}$$

    $$\displaystyle \dfrac{dS}{dx}= 4\dfrac{x^{2}+1-4x^{2}}{\left ( x^{2}+1 \right )^{3}}$$

    or $$\displaystyle \dfrac{dS}{dx}= 4\dfrac{1-3x^{2}}{\left ( 1+x^{2} \right )^{3}}=0$$

    $$\displaystyle \therefore x= \dfrac{1}{\sqrt{3}}, -\dfrac{1}{\sqrt{3}}$$

    Now consider change of sign at $$\displaystyle x= \dfrac{1}{\sqrt{3}}, \dfrac{dS}{dx}$$ changes from +ve to -ve.
    Hence S has maximum at $$\displaystyle x= \dfrac{1}{\sqrt{3}}$$. 
    When $$\displaystyle x= \dfrac{1}{\sqrt{3}}$$ the value of $$\displaystyle y= -\dfrac{1}{2}$$
    Hence the point is $$\displaystyle \left ( \dfrac{1}{\sqrt{3}},-\dfrac{1}{\sqrt{2}} \right ).$$
  • Question 6
    1 / -0
    The tangent to the curve $$x= a\sqrt{\cos 2\theta }\cos \theta $$, $$y= a\sqrt{\cos 2\theta }\sin \theta
    $$ at the point corresponding to $$\theta = \pi /6$$ is
    Solution
    $$\displaystyle \dfrac{dx}{d\theta }= -a\sqrt{\cos 2\theta }\sin \theta  +\dfrac{-a\cos \theta \sin 2\theta }{\sqrt{\cos 2\theta }}$$

    $$\displaystyle = -a\dfrac{\cos 2\theta \sin \theta +\cos \theta \sin 2\theta }{\sqrt{\cos 2\theta }}$$

    $$\displaystyle = \dfrac{-a\sin 3\theta }{\sqrt{\cos 2\theta }}$$

    $$\displaystyle \dfrac{dy}{d\theta }= a\sqrt{\cos 2\theta }\, \cos \theta -a\dfrac{\sin \theta \sin 2\theta }{\sqrt{\cos 2\theta }}$$

    $$
    \displaystyle = \dfrac{a\cos 3\theta }{\sqrt{\cos 2\theta }}$$

    Hence $$\displaystyle \dfrac{dy}{dx}= -\cot 3\theta \Rightarrow \dfrac{dy}{dx}|_{\theta = \pi /6 }= 0$$
    So the tangent to the curve at $$\theta = \pi /6 $$ is parallel to the $$x$$-axis.
  • Question 7
    1 / -0
    The equation of the tangents to $$\displaystyle 4x^{2}-9y^{2}=36$$ which are perpendicular to the straight line $$\displaystyle 2y+5x= 10$$ are
    Solution
    Given, $$2y+5x=10$$
    $$2y'+5=0$$
    $$y'=\dfrac{-5}{2}$$.
    Hence the required slope is $$\dfrac{2}{5}$$.
    Now 
    $$4x^{2}-9y^{2}=36$$.
    $$4x^{2}-36=9y^{2}$$
    $$y=\dfrac{1}{3}.\sqrt{4x^{2}-36}$$.
    $$y'=\dfrac{8x}{6\sqrt{4x^{2}-36}}$$ $$=\dfrac{2}{5}$$
    $$40x=12\sqrt{4x^{2}-36}$$
    $$10x=3\sqrt{4x^{2}-36}$$
    $$100x^{2}=36x^{2}-324$$
    $$64x^{2}=-324$$
    $$x^{2}=\dfrac{-81}{16}$$.
    Hence no real values of x.
    Hence answer is none of these.
  • Question 8
    1 / -0
    The tangent to the curve $$y=e^{x}$$ drawn at the point $$\left ( c,e^{c} \right )$$ intersects the line joining the points $$(c -1,e^{c-1})$$ and $$(c +1,e^{c+1}) $$
    Solution
    Given equation of curve 
    $$y=e^x$$
    $$\dfrac{dy}{dx}=e^x$$
    Slope of tangent at point $$(c,e^c)$$ is $$e^c$$
    Equation of tangent at $$(c,e^{c})$$ is 
    $$y-e^{c}=e^{c}(x-c)$$        ....(1)

    Equation of straight line joining $$A\left ( c+1,e^{c+1} \right )$$ and $$B\left ( c-1,e^{c-1} \right )$$ is

    $$\displaystyle y-e^{c+1}=\dfrac{e^{c+1}-e^{c-1}}{2}\left ( x-c-1 \right )$$       .....(2)

    Subtracting (2) from (1), we get
    $$\displaystyle e^{c}\left ( e-1 \right )=e^{c}\left [ \left ( x-c \right )-\dfrac{1}{2} \left ( e-e^{-1} \right )\left ( x-c \right )+\dfrac{1}{2}\left ( e-e^{-1} \right )\right ]$$

    $$\displaystyle \Rightarrow \dfrac{1}{2}\left ( e+e^{-1} \right )-1=\left ( x-c \right )\left [ 1-\dfrac{1}{2}\left ( e-e^{-1} \right ) \right ]$$

    $$\displaystyle \Rightarrow x-c=\dfrac{e+e^{-1}-2}{2-e+e^{-1}}< 0$$

    $$[ \because e+e^{-1}>2$$ and $$2+e^{-1}-e<0 ]$$
    $$\Rightarrow x<c$$
    Thus the two lines meet to the left of $$x = c$$.

  • Question 9
    1 / -0
    For the curve $${x}^{2}+4xy+8{y}^{2}=64$$ the tangents are parallel to the $$x$$-axis only at the points
    Solution
    Given curve is $${x}^{2}+4xy+8{y}^{2}=64.....(i)$$
    On differentiating w.r.t $$x$$ ,we get
    $$2x+4(y+x\cfrac{dy}{dx})+16y\cfrac{dy}{dx}=0$$
    $$\Rightarrow$$ $$2x+4y+(4x+16y)\cfrac{dy}{dx}=0$$
    $$\Rightarrow$$ $$\cfrac{dy}{dx}=-\cfrac{(x+2y)}{2(x+4y)}$$
    Since, tangent are parallel to $$x$$-axis only
    ie., $$\cfrac{dy}{dx}=0$$
    $$\Rightarrow$$ $$-\cfrac{(x+2y)}{2(x+4y)}=0$$ 
    $$\Rightarrow$$ $$x+2y=0.....(ii)$$
    Now, on putting the values of $$x$$ from eqs. $$(i)$$ in $$(ii)$$ we get
    $$4{y}^{2}-8{y}^{2}+8{y}^{2}=64$$
    $$\Rightarrow$$ $${y}^{2}=16$$
    $$\Rightarrow$$ $$y=\pm 4$$
    from eq. $$(ii)$$
    When $$y=4,x=-8$$
    and when $$y=-4, x=8$$
    Hence, required points are $$(-8,4)$$ and $$(8,-4)$$
  • Question 10
    1 / -0
    y = $$[x(x-3)]^2$$ is increasing when-
    Solution
    $$y={ \left[ x\left( x-3 \right)  \right]  }^{ 2 }$$ increases when For function to be increasing $$\cfrac { dy }{ dx } >0$$
    $$\cfrac { dy }{ dx } =2x(x-3)\times (2x-3)>0$$
    Now,
    $$x(x-3)(2x-3)>0$$
    Plotting on number line
    (Image)
    At a value less than zero, expression is negative
    Therefore $$y={ \left[ x\left( x-3 \right)  \right]  }^{ 2 }$$ increases for
    $$x\epsilon \left( 0,\cfrac { 3 }{ 2 }  \right) \bigcup { \left( 3,\infty  \right)  } $$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now