Self Studies

Application of Derivatives Test - 59

Result Self Studies

Application of Derivatives Test - 59
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Given function $$f(x)=\left(\displaystyle\frac{e^{2x}-1}{e^{2x}+1}\right)$$ is.
    Solution
    $$f\left( x \right) =\cfrac { { e }^{ 2x }-1 }{ { e }^{ 2x }+1 } $$

    $$f\left( x \right) =\cfrac { \left[ { e }^{ 2x }+1 \right] \left[ 2{ e }^{ 2x } \right] -\left[ { e }^{ 2x }-1 \right] \left[ 2{ e }^{ 2x } \right]  }{ { \left[ { e }^{ 2x }+1 \right]  }^{ 2 } } $$

    $$f^{ 1 }\left( x \right) =\cfrac { 2{ e }^{ 2x }\left[ { e }^{ 2x }+1-{ e }^{ 2x }+1 \right]  }{ { \left[ { e }^{ 2x }+1 \right]  }^{ 2 } } $$

    $$f^{ 1 }\left( x \right) =\cfrac { 4{ e }^{ 2x } }{ { \left[ { e }^{ 2x }+1 \right]  }^{ 2 } } $$

    Now,  $${ \left[ { e }^{ 2x }+1 \right]  }^{ 2 }>0$$  and  $${ e }^{ 2x }>0$$
    $$\therefore f^{ 1 }\left( x \right) >0$$
    $$\therefore f\left( x \right)$$ is increasing function.
  • Question 2
    1 / -0
    The coordinates of the points(s) at which the tangents to the curve $$\displaystyle y=x^{3}-3x^{2}-7x+6$$ cut the positive semi axis OX a line segment half that on the negative semi axis OY is/are given by
    Solution
    Let the point of tangency be
    $$(x_{1}+y_{1})$$
    Then the equation of tangent is
    $$\dfrac{y-y_{1}}{x-x_{1}}=3x_{1}^{2}-6x_{1}-7$$
    when
    $$y=0,x=x_{1}+\dfrac{-y}{3x_{1}-6x_{1}-7}$$
    when
    $$x=0,y=y_{1}-x_{1}(3x_{1}-6x_{1}-7)$$
    $$-2(x_{1}+\dfrac{-y}{3x_{1}-6x_{1}-7})=y_{1}-x_{1}(3x_{1}-6x_{1}-7)$$
    $$-2(\dfrac{x_{1}(3x_{1}-6x_{1}-7)-y_{1}}{3x_{1}-6x_{1}-7})=y_{1}-x_{1}(3x_{1}-6x_{1}-7)$$
    $$2=3x_{1}-6x_{1}-7$$
    $$3x_{1}-6x_{1}-9=0$$
    $$x_{1}=-1 or 3$$
    when
    $$x_{1}=-1,y_{1}=(-1)^{3}-3(-1)^{2}-7(-1)+6=9$$
    and the y-intercept is
    $$9-(-1)[3(-1)^{2}-6(-1)-7]=11> 0$$
    when
    $$x_{1}=3,y_{1}=(3)^{3}-3(3)^{2}-7(3)+6=-15$$
    and the y-intercept is
    $$-15-(3)[3(3)^{2}-6(3)-7]=-21< 0$$
    So,the point of tangency is $$(-1,9)$$, this is the correct answer.
  • Question 3
    1 / -0
    If $$y = 4x - 5$$ is a tangent to the curve $$y^{2} = px^{3} + q$$ at $$(2, 3)$$, then
    Solution
    Since, $$(2, 3)$$ lies on the curve $$y^{2} = px^{3} + q$$
    Therefore, $$9 = 8p + q ..... (i)$$
    $$y^{2} = px^{3} + q$$
    $$\Rightarrow 2y \dfrac {dy}{dx} = 3px^{2}$$
    $$\dfrac {dy}{dx} = \dfrac {3px^{2}}{2y}$$
    $$\Rightarrow \left (\dfrac {dy}{dx}\right )_{(2, 3)} = \dfrac {12p}{6} = 2p$$
    Since, $$y = 4x - 5$$ is tangent to $$y^{2} = px^{3} + q$$ at $$(2, 3)$$. Therefore,
    $$\therefore \left (\dfrac {dy}{dx}\right )_{(2, 3)} =$$ Slope of the line $$y = 4x - 5$$
    $$\Rightarrow 2p = 4 \Rightarrow p = 2$$
    Putting $$p = 2$$ in Eq. (i), we get $$q = -7$$.
  • Question 4
    1 / -0
    If $$f(x)=e^x(x-2)^2$$ then
    Solution
    $$f\left( x \right) ={ e }^{ x }{ (x-2) }^{ x }$$
    For increasing or decreasing, we need to find $$f'\left( x \right) $$
    $$f'\left( x \right) ={ e }^{ x }\times 2(x-2)+{ e }^{ x }{ (x-2) }^{ x }$$
    $$={ e }^{ x }(x-2)\left[ 2+x-2 \right] $$
    $$f'\left( x \right) ={ e }^{ x }x(x-2)$$
    It will have two solutions, $$x=0,x=2$$
    plotting it on number line
    (Image)
    Therefore $$f'\left( x \right) >0$$ for $$\left( -\infty ,0 \right) \bigcup { (2,\infty ) } $$ and
    $$f'\left( x \right) <0$$ for $$(0,2)$$
    Thus function increases for $$\left( -\infty ,0 \right) \bigcup { (2,\infty ) } $$ and function decreases for $$(0,2)$$

  • Question 5
    1 / -0
    All the critical points of $$f(x)=\dfrac {|2-x|}{x^2}$$ is/are:
    Solution
    The critical point for $$f(x)$$ is a value $$x_0$$ where its derivative is zero. i.e., $$f^{'}(x_0)=0$$

    Given that $$f(x)=\dfrac{|2-x|}{x^2}$$

    Therefore, $$f^{'}(x)=\dfrac{x^2(\dfrac{|2-x|}{2-x})-|2-x|(2x)}{x^4}=0$$

    $$\implies \dfrac{|2-x|(x^2-2x(2-x))}{x^4(2-x)}=0$$

    $$\implies |2-x|(x^2-2x(2-x))=0$$ and $$x^4\neq 0$$ and $$2-x\neq 0$$

    $$\implies |2-x|=0$$ and $$(3x-4)x=0$$ and $$x\neq 0$$ and $$x\neq 2$$

    $$\implies x=2$$ and $$x=0$$ and $$x=\dfrac 43$$and $$x\neq 0$$ and $$x\neq 2$$

    Therefore, $$x=\dfrac 43$$ is the critical point.
  • Question 6
    1 / -0
    If the slope of the curve $$y=\cfrac { ax }{ b-x } $$ at the point $$(1,1)$$ is $$2$$, then the values of $$a$$ and $$b$$ are respectively
    Solution
    $$y=\cfrac { ax }{ b-x } $$
    Slope= $$\cfrac { dy }{ dx } $$
    So,$$\cfrac { dy }{ dx } $$= $$\cfrac { a(b-x)-(-1)(ax) }{ { (b-1) }^{ 2 } } \quad \longrightarrow (1)$$
    for $$(1,1)$$
    put in equation of curve-
    $$1=\cfrac { a }{ (b-1) } \quad \Rightarrow (b-1)=a\quad \longrightarrow (2)$$
    From slop after putting (1,1)
    We get,
    $$\\ 2=\cfrac { a(b-1)+a }{ { (b-1) }^{ 2 } } $$
    put $$(b-1)=a$$ from equation(2)
    $$2=\cfrac { { a }^{ 2 }+a }{ { a }^{ 2 } } \quad \quad \\ \Rightarrow 2{ a }^{ 2 }={ a }^{ 2 }+a\\ \quad \Rightarrow a(a-1)=0\\ \quad \Rightarrow a=0,1$$
    put in (2),
    We get 
    $$b=1,2$$
    In option only one value is given
    $$\therefore a=1,b=2$$

  • Question 7
    1 / -0
    If $$f:[1, 10]\rightarrow[1,10]$$ is a non-decreasing function and $$g:[1,10] \rightarrow [1,10]$$ is a non-increasing function, Let $$h(x) = f(g(x))$$ with $$h(1)=1$$. then, $$h(2)$$
    Solution

  • Question 8
    1 / -0
    The curve given by $$x+y={ e }^{ xy }$$ has a tangent parallel to the y-axis at the point
    Solution
    Given curve is $$x+y={ e }^{ xy }\quad $$
    On differentiating w.r.t $$x$$ we get
    $$1+\cfrac { dy }{ dx } ={ e }^{ xy }\left\{ y+x\cfrac { dy }{ dx }  \right\} $$
    $$\Rightarrow \cfrac { dy }{ dx } =\cfrac { y{ e }^{ xy }-1 }{ 1-x{ e }^{ xy } } $$
    Since, tangent is parallel to y-axis
    Here, $$\cfrac { dy }{ dx } =\infty \Rightarrow 1-x{ e }^{ xy }=0$$
    $$\Rightarrow 1-x(x+y)=0$$
    This holds for $$x=1,y=0$$ 
  • Question 9
    1 / -0

    Directions For Questions

    Tangent at any point $$p_{1}$$ (other than $$(0, 0)$$) on the curve $$y = x^{3}$$ meets the curve again at $$p_{2}$$.
    Tangent at $$p_{2}$$ meets the curve again at $$p_{3}$$ and so on.

    ...view full instructions

    Abscissa of $$p_{1}, p_{2}, p_{3} .... p_{n}$$ are in
    Solution

  • Question 10
    1 / -0
    If $$g(x)$$ is continuous function at $$x = a$$, such that $$g(a) > 0$$ and $$f'(x) (g(x))(x^{2} - ax + a^{2}) \forall x\epsilon R$$, then $$f(x)$$ is
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now