Self Studies

Application of Derivatives Test - 61

Result Self Studies

Application of Derivatives Test - 61
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A point on the curve $$y = 2{x^3} + 13{x^2} + 5x + 9$$, the tangent at which passes through the origin is 
    Solution
    Let $$P(a,\,b)$$ be a point on the given curve $$y=2x^3+13x^2+5x+9$$
    $$b=2a^3+13a^2+5a+9$$             --------- ( 1 )
    Now, taking derivative of $$y$$.
    $$\therefore$$  $$y'=6x^2+26x+5\Rightarrow y'\,at\,P=6a^2+26a+5$$.
    Equation of tangent at $$P$$ is
    $$y-b=(6a^2+26a+5)(x-a)$$
    This tangent passes through origin means
    $$b=a(6a^2+26a+5)$$
    $$2a^3+13a^2+5a+9=6a^3+26a^2+5a$$
    $$4a^3+13a^2-9=0$$
    $$(a+1)(a+3)(4a-3)=0$$
    Taking, $$a+1=0$$
    We get, $$a=-1$$
    Substituting $$a=-1$$ in equation (1) we get,
    $$b=2(-1)^3+13(-1)^2+5(-1)+9$$
    $$\therefore$$  $$b=15$$
    $$\therefore$$  $$P(a,\,b)=(-1,\,15)$$
    $$\therefore$$   A point on the curve $$y=2x^3+13x^2+5x+9$$, the tangent at which passes through the origin is $$(-1,\,15)$$.

  • Question 2
    1 / -0
    The value of n for which the length of the sub-normal at any point of the curve $$y^3= a^{1-n}x^{2n}$$ must be constant, is
  • Question 3
    1 / -0
    The value of 'a' for which the function $$f\left( x \right) = \left( {a + 2} \right){x^3} - 3a{x^2} + 9ax - 1$$ decreases for all real values of x is
    Solution
    decreasing or strictly decreasing => $$f'(x)<0$$
    monotonically decreasing => $$f'(x)<=0$$.
    $$f'(x)=3(a+2)x^{2}-6ax+9a$$
    Given      $$f'(x)<0$$    =>   $$a+2<0  ,  (6a)^{2}-4(3(a+2))(9a)<0$$                         (from quadratic equations graph concept)
     after simplifying    $$a\epsilon(-\infty,-3)$$                              
  • Question 4
    1 / -0
    If the tangent at any point on the curve $$x^{4} +y^{4}=a^{4}$$ cuts off intercepts $$p$$ and $$q$$ on the coordinate axes the value of $$p^{-4/3}+q^{-4/3}$$ is
    Solution

    Consider the given expression.

    $${{x}^{4}}+{{y}^{4}}={{a}^{4}}$$

     Let the point on the curve be $$M\left( {{x}_{0}},{{y}_{0}} \right)$$.

     Therefore,

    $$x_{0}^{4}+x_{0}^{4}={{a}^{4}}$$

     Differentiate the expression given in the question with respect to $$x$$.

    $$ {{x}^{4}}+{{y}^{4}}={{a}^{4}} $$

    $$ 4{{x}^{3}}+4{{y}^{3}}\dfrac{dy}{dx}=0 $$

    $$ \dfrac{dy}{dx}=-\dfrac{{{x}^{3}}}{{{y}^{3}}} $$

     So, at the point $$M$$, the slope is,

    $$\Rightarrow -\dfrac{x_{0}^{3}}{y_{0}^{3}}$$

     Therefore, equation of the tangent is,

    $$\begin{align}

    $$ y-{{y}_{0}}=-\dfrac{x_{0}^{3}}{y_{0}^{3}}\left( x-{{x}_{0}} \right) $$

    $$ yy_{0}^{3}-y_{0}^{4}=-x_{0}^{3}x+x_{0}^{4} $$

    \end{align}$$

     Let $$p$$ and $$q$$ be the $$x$$ and $$y$$ intercept, respectively. So, at $$x$$ intercept,

    $$ -y_{0}^{4}=-x_{0}^{3}p+x_{0}^{4} $$

    $$ x_{0}^{3}p=x_{0}^{4}+y_{0}^{4} $$

    $$ p=\dfrac{x_{0}^{4}+y_{0}^{4}}{x_{0}^{3}} $$

    $$ p=\dfrac{{{a}^{4}}}{x_{0}^{3}} $$

     Similarly,

    $$q=\dfrac{{{a}^{4}}}{y_{0}^{3}}$$

     Now, calculate the value of $${{p}^{-4/3}}+{{q}^{-4/3}}$$.

    $$ ={{\left( \dfrac{{{a}^{4}}}{x_{0}^{3}} \right)}^{-4/3}}+{{\left( \dfrac{{{a}^{4}}}{y_{0}^{3}} \right)}^{-4/3}} $$

    $$ ={{\left( \dfrac{x_{0}^{3}}{{{a}^{4}}} \right)}^{4/3}}+{{\left( \dfrac{y_{0}^{3}}{{{a}^{4}}} \right)}^{4/3}} $$

    $$ =\left( \dfrac{x_{0}^{4}}{{{a}^{16/3}}} \right)+\left( \dfrac{y_{0}^{4}}{{{a}^{16/3}}} \right) $$

    $$ =\dfrac{x_{0}^{4}+y_{0}^{4}}{{{a}^{16/3}}} $$

    $$ =\dfrac{{{a}^{4}}}{{{a}^{16/3}}} $$

    $$ ={{a}^{-4/3}} $$

     Hence, this is the required result.

  • Question 5
    1 / -0
    The slope of the tangent to the curve at a point $$(x,y) $$ on it is proportional to $$(x-2).$$ If the slope of the tangent to the curve at $$(10,-9)$$  on it is $$-3$$. The equation of the curves is .
    Solution

  • Question 6
    1 / -0
    At any two points of the curve represented parametrically by $$x = a\left( {2\cos t - \cos 2t} \right);y = a\left( {2\sin t - \sin 2t} \right)$$ the tangent are parallel to the axis of $$x$$ corresponding to the values of the parameter $$1$$ differing from each other by
    Solution

  • Question 7
    1 / -0
    Given $$P(x)=x^4+ax^3+bx^2+cx+d$$ such that $$x=0$$ is the only real root of $$P(x)=0$$. If $$P(-1) < P(1)$$, then in the interval $$[-1, 1]$$.
    Solution

  • Question 8
    1 / -0
    Find the slope of tangent of the curve$$x = a\,{\sin ^3}t,y = b\,\,{\cos ^3}t$$ at $$t = \frac{\pi }{2}$$
    Solution
    $$x=asin^3t $$
    $$dx=a3sin^2t(cost)dt$$…(1)
    $$y=bcos^3t$$
    $$dy=b3cos^2t(-sint)dt$$   ..(2)
    At $$t=\dfrac{\Pi}{2}$$
      $$ \dfrac{dx}{dt}=0$$  and hence $$ \dfrac{dy}{dx}=\text{not defined}$$
  • Question 9
    1 / -0
    The set of all values of $$a$$ for which $$ f\left( x \right) =\left( { a }^{ 2 }-3a+2 \right) \left( \cos ^{ 2 }{ \dfrac { x }{ 4 } -\sin ^{ 2 }{ \dfrac { x }{ 4 }  }  }  \right) +\left( a-1 \right) x+\sin { 1 }$$ does not possess critical points is
    Solution

  • Question 10
    1 / -0
    Let $$f(x) = \underset{x}{\overset{x + \dfrac{\pi}{3}}{\int}} |\sin \, \theta | \, d \theta \, \, (x \in [0, \pi])$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now