Self Studies

Application of Derivatives Test - 63

Result Self Studies

Application of Derivatives Test - 63
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The curve $$y-{e}^{xy}+x=0$$ has a vertical tangent at the point
    Solution

  • Question 2
    1 / -0
    The slope of the curve $$y=\sin { x } +\cos ^{ 2 }{ x }$$ is zero at a point , whose x-coordinate can be ?
    Solution

  • Question 3
    1 / -0
    If the slope of one of the lines given by $${a^2}{x^2} + 2hxy+by^2 = 0$$ be three times of the other , then h is equal to 
    Solution

  • Question 4
    1 / -0
    If the curves $$\dfrac {x^{2}}{a^{2}} + \dfrac {y^{2}}{4} = 1$$ and $$y^{3} = 16x$$ intersect at right angles, then $$a^{2}$$ is equal to
    Solution
    $$y^{3}=16x$$
    $$3y^{2}\dfrac{dy}{dx}=16$$
    $$\dfrac{dy}{dx}=m_{1}=\dfrac{16}{3y^{2}}$$

    $$\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{4}=1$$
    $$\dfrac{2x}{a^{2}}+\dfrac{2y}{4}\dfrac{dy}{dx}=0$$
    $$\dfrac{dy}{dx}=\dfrac{-x}{a^{2}}\times \dfrac{4}{y}=m_{2}$$

    $$m_{1}.m_{2}=-1$$
    $$\dfrac{16}{3y^{2}}\left(\dfrac{-4x}{a^{2}y}\right)=-1$$
    $$\dfrac{16\times 4\times x}{3a^{2}y^{3}}=1\Rightarrow 64x=3a^{2}y^{3}$$
    $$a^{2}=\dfrac{64 x}{3y^{3}}$$ Now $$y^{3}=16 x$$
    $$a^{2}=\dfrac{64 x}{3\times 16 x}\Rightarrow a^{2}=\dfrac{4}{3}$$









  • Question 5
    1 / -0
    If for a curve represented parametrically by $$x={ sec }^{ 2 }t,\quad y=cot\quad t\quad $$ , the tangent  at a point $$P(t=\frac { \pi  }{ 4 } )$$ meets the curve again at the point Q, then $$\begin{vmatrix} PQ \end{vmatrix}$$is equal to 
    Solution

  • Question 6
    1 / -0
    $$\dfrac { d } { d x } \left( \sin ^ { 5 } x \cdot \sin 5 x \right) =$$
    Solution
    $$\frac { d }{ dx } \left( { sin }^{ 5 }x.sin5x \right) $$

    $$={ sin }^{ 5 }x\frac { d }{ dx } \left( sin5x \right) +sin5x\frac { d }{ dx } \left( { sin }^{ 5 }x \right) $$

    $$={ sin }^{ 5 }x\left[ 5cos5x \right] +sin5x\left[ 5{ sin }^{ 4 }x.cosx \right] $$

    $$=5{ sin }^{ 5 }xcos5x+5sin5x{ sin }^{ 4 }x.cosx$$

    $$=5{ sin }^{ 4 }x\left[ sinx.cos5x+cosx.sin5x \right] $$

    $$=5{ sin }^{ 4 }x\left[ sin\left( x+5x \right)  \right] $$

    $$=5{ sin }^{ 4 }xsin\left( 6x \right) $$
  • Question 7
    1 / -0
    Let f and g be non-increasing and non-decreasing functions respectively from $$[0,\infty ]$$ vto $$[0,\infty ]$$ and $$h(x)=f(g(x)),h(0)=0$$, then in $$[0,\infty ]$$, $$h(x)-h(1)$$ is 
    Solution

  • Question 8
    1 / -0
    The function $$f\left( x \right) = \frac{{\left| {x - 1} \right|}}{{{x^2}}}$$ is
    Solution

  • Question 9
    1 / -0
    $$y = 6\tan \,x\left( {{e^x} - x - 1} \right) - 3{x^3} - {x^4} - \frac{5}{4}{x^5},\,$$ if $${n^{th}}$$ derivative at x=0 is non zero then least value of n is
    Solution

  • Question 10
    1 / -0
    If $$(x+{ y }^{ 3 })\dfrac { dy }{ dx } $$=y and y(0)=2. then sum of all possible value(s) of y(1) is ________________.
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now