Self Studies

Application of Derivatives Test - 64

Result Self Studies

Application of Derivatives Test - 64
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The function $$f(x)=x-ln|2x+1|,x\epsilon \left(-100,\dfrac{-1}{2}\right)\cup \left(\dfrac{-1}{2},\dfrac{1}{2}\right)$$ is decreasing in interval
    Solution
    Given $$f\left( x \right) =x-log\left| 2x+1 \right| $$

    Differentiate function w.r.t. x, we get,

    $${ f }^{ \prime  }\left( x \right) =\frac { d }{ dx } \left[ x-log\left| 2x+1 \right|  \right] $$

    $$\therefore { f }^{ \prime  }\left( x \right) =1-\frac { 1 }{ 2x+1 } \times \frac { d }{ dx } \left( 2x+1 \right) $$

    $$\therefore { f }^{ \prime  }\left( x \right) =1-\frac { 1 }{ 2x+1 } \times 2$$

    $$\therefore { f }^{ \prime  }\left( x \right) =\frac { 2x+1-2 }{ 2x+1 } $$

    $$\therefore { f }^{ \prime  }\left( x \right) =\frac { 2x-1 }{ 2x+1 } $$

    For function to be decreasing, $${ f }^{ \prime  }\left( x \right) <0$$

    $$\therefore \frac { 2x-1 }{ 2x+1 } <0$$

    Case 1) $$2x-1<0$$ and $$2x+1>0$$

    $$\therefore 2x<1$$ and $$2x>-1$$

    $$\therefore x<\frac { 1 }{ 2 } $$ and $$x>-\frac { 1 }{ 2 } $$

    Thus, function is decreasing in the interval $$\left( \frac { -1 }{ 2 } ,\frac { 1 }{ 2 }  \right) $$

    Case 2) $$2x-1>0$$ and $$2x+1<0$$

    $$\therefore 2x>1$$ and $$2x<-1$$

    $$\therefore x>\frac { 1 }{ 2 } $$ and $$x<-\frac { 1 }{ 2 } $$
    Satisfying both the conditions simultaneously is not possible.
  • Question 2
    1 / -0
    For what values of a , $$f(x) = -x^3 +4ax^2 +2x-5$$ is decreasing $$\forall$$ x
    Solution
    Given $$y=f\left( x \right) =-{ x }^{ 3 }+4a{ x }^{ 2 }+2x-5$$

    For continuously decreasing function, $$\frac { dy }{ dx } <0$$

    $$\therefore \frac { d }{ dx } \left[ -{ x }^{ 3 }+4a{ x }^{ 2 }+2x-5 \right] <0$$

    $$\therefore -3{ x }^{ 2 }+4a\left( 2x \right) +2<0$$

    $$\therefore -3{ x }^{ 2 }+8ax+2<0$$

    $$\therefore 3{ x }^{ 2 }-8ax-2>0$$

    $$\therefore \frac { -\left( -8a \right) \pm \sqrt { { \left( -8a \right)  }^{ 2 }-4\times 3\times \left( -2 \right)  }  }{ 2\times 3 } >0$$

    $$\therefore \frac { 8a\pm \sqrt { 64{ a }^{ 2 }+24 }  }{ 6 } >0$$

    $$\therefore 8a\pm \sqrt { 64{ a }^{ 2 }+24 } >0$$

    Consider first equation $$8a+\sqrt { 64{ a }^{ 2 }+24 } >0$$

    $$\therefore \sqrt { 64{ a }^{ 2 }+24 } >-8a$$
    Squaring both sides, we get,

    $$\therefore 64{ a }^{ 2 }+24>64{ a }^{ 2 }$$

    $$\therefore 24>0$$
    We don't get value of a in this condition.

    Consider second equation $$8a-\sqrt { 64{ a }^{ 2 }+24 } >0$$
    $$\therefore 8a>\sqrt { 64{ a }^{ 2 }+24 } $$
    Squaring both sides, we get,

    $$\therefore 64{ a }^{ 2 }>64{ a }^{ 2 }+24$$
    $$\therefore 0>24$$
    This condition is not possible.

    Thus, option (D) is correct.
  • Question 3
    1 / -0
    Equation of the tangent line at $$y=\dfrac{a}{4}$$ to the curve $$y\left( { x }^{ 2 }+{ a }^{ 2 } \right) ={ ax }^{ 2 }$$.
    Solution

  • Question 4
    1 / -0
    Which of the following is not always correct for the function $$f(x)$$ and $$g(x)$$ these are inverse to each other.
    Solution

  • Question 5
    1 / -0
    Solve it:-
    $$y = x + \dfrac{1}{x},$$
    Solution

  • Question 6
    1 / -0
    The increasing function in $$(0,\ \pi /4)$$ is
    Solution

  • Question 7
    1 / -0
    In the interval $$\left( {7,\infty } \right),f(x) = \left| {x - 5} \right| + 2\left| {x - 7} \right|$$ is 
    Solution

  • Question 8
    1 / -0
    Let $$f :\left[ 2,4 \right] \rightarrow \left[ 3,5 \right] $$ be a bijective decreasing function, then find $$\int _{ 2 }^{ 4 }{ f(t)dt- } \int _{ 3 }^{ 5 }{ { f }^{ -1 }(t)dt. } $$
    Solution

  • Question 9
    1 / -0
    The increasing function in $$\left(0,\pi/4\right)$$ is 
    Solution

  • Question 10
    1 / -0
    If $$f(x)=\cos x+a^{2}x+b$$ is an increasing function for all values of $$x$$, then the value which $$'a'$$ can take. 
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now