Self Studies

Application of ...

TIME LEFT -
  • Question 1
    1 / -0

    Which of the following statements is/are correct ?

  • Question 2
    1 / -0

    $$f(x)$$ is differentiable function satisfying the relation $$f(x)=x^{2}+\displaystyle \int^{x}_{0}e^{-t}f(x-t)dt$$, then $$\displaystyle \sum^{9}_{k=1}f(k)$$ equals

  • Question 3
    1 / -0

    $$f(x)=\frac{x}{log x}-\frac{log}{x}$$ is increasing in 

  • Question 4
    1 / -0

    If $$y = \log _ { \sin x } ( \tan x ) ,$$ then $$\frac { d y } { d x }$$ at $$x = \frac { \pi } { 4 }$$ is:

  • Question 5
    1 / -0

    If $$\theta$$ is angle of intersection between $$y=10-x^{2}$$ and $$y=4+x^{2}$$ then $$|\tan \theta|$$ is-

  • Question 6
    1 / -0

    The function $$f(x)=\sqrt{25-4x^{2}}$$ is increasing in

  • Question 7
    1 / -0

    The function log (log x) increases in 

  • Question 8
    1 / -0

    The function f defined by $$f(x)=(x+2)e^{-x}$$ si

  • Question 9
    1 / -0

    If $$f:R\rightarrow R$$ is the function defined by $$f\left( x \right) =\frac { { e }^{ { x }^{ 2 } }-{ e }^{ -x^{ 2 } } }{ { e }^{ x^{ 2 } }+{ e }^{ { -x }^{ 2 } } } ,$$ then

  • Question 10
    1 / -0

    Let $$f(x)=\left\{\begin{matrix} max \{|x|, x^2\}, & |x|\leq 2\\ 8-2|x|, & 2 < |x|\leq 4\end{matrix}\right.$$
    Let S be the set of points in the interval $$(-4, 4)$$ at which f is not differentiable. Then S?

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now