$${\textbf{Step -1: Find the value of slope}}{\textbf{.}}$$
$${\text{The slope of the tangent to the curve at a point }}\left( {x,y} \right){\text{ on it is proportional to }}\left( {x - 2} \right).$$
$$ = \dfrac{{dy}}{{dx}} = m\left( {x - 2} \right)$$
$$ = \dfrac{{dy}}{{dx}} = k\left( {x - 2} \right)\left[ {{\text{where }}k{\text{ is a proportionality constant}}} \right]$$
$${\text{Slope of the tangent to the curve at }}\left( {10, - 9} \right){\text{ is }} - 3.$$
$$ \Rightarrow - 3 = k\left( {10 - 2} \right)$$
$$ \Rightarrow - 3 = 8k$$
$$ \Rightarrow k = - \dfrac{3}{8}$$
$$ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{3}{8}\left( {x - 2} \right)$$
$${\textbf{Step -2: Integrate the formed equation and solve it further}}{\textbf{.}}$$
$${\text{Integrating both sides,}}$$
$$ \Rightarrow y = - \dfrac{3}{8}\dfrac{{{{\left( {x - 2} \right)}^2}}}{2} + c{\text{ }}.......\left( i \right){\text{ }}\left[ {{\text{Eqaution of curve}}} \right]$$
$${\text{Also, }}\left( {10, - 9} \right){\text{ satisfy the equation of curve as it lies on the curve}}{\text{.}}$$
$$\therefore - 9 = - \dfrac{3}{8}\dfrac{{{{\left( {10 - 2} \right)}^2}}}{2} + c$$
$$ \Rightarrow - 9 = - \dfrac{3}{{16}} \times {8^2} + c$$
$$ \Rightarrow c = 3$$
$${\textbf{Hence, the equation of the curve is }}\mathbf{y= - \dfrac{3}{{16}}{\left( {x - 2} \right)^2} + 3.}$$