Self Studies

Application of Derivatives Test - 66

Result Self Studies

Application of Derivatives Test - 66
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The function $$\frac{ln(1+x)}{x}$$ in $$(0,\infty )$$ is
    Solution

  • Question 2
    1 / -0
    If the subnormal to the curve $${ x }^{ 2 }.{ y }^{ n }={ a }^{ 2 }$$ is a constant then n=
    Solution
    Given,

    $$x^2y^n=a^2$$

    $$\Rightarrow x=\sqrt{\dfrac{a^2}{y^n}}$$

    $$\Rightarrow 2xy^n+x^2ny^{n-1}\dfrac{dy}{dx}=0$$

    $$\Rightarrow \dfrac{dy}{dx}=-\dfrac{2y}{nx}$$

    $$\Rightarrow \dfrac{dy}{dx}=-\dfrac{2y}{n\sqrt{\frac{a^2}{y^n}}}$$

    $$\therefore \dfrac{dy}{dx}=-\dfrac{2}{na}y^{\frac{n+2}{2}}$$

    Subnormal is given by,

    $$SN=y \dfrac{dy}{dx}$$

    $$=y\left ( -\dfrac{2}{na}y^{\frac{n+2}{2}} \right )$$

    $$\therefore SN=-\dfrac{2}{na}y^{\frac{n+4}{2}}$$

    $$\therefore n=-4$$

  • Question 3
    1 / -0
    Let $$f(x)$$ be a function satisfying $$f'(x)=f(x)$$ with $$f(0)=1$$ and g be the function satisfying $$f(x)+g(x)=x^2$$ the value of the integral $$\displaystyle\int^1_0f(x)g(x)dx$$ is?
    Solution
    Given: $$f'(x)=f(x)$$, with $$f(0)=1$$ and $$f(x)+g(x)=x^2$$

    To find: Value of $$\displaystyle \int'_0 f(x)g(x)dx$$.

    Solution : $$f'(x)=f^0(x)=\dfrac{f'(x)}{f(x)}=1$$

    $$\displaystyle \therefore \int \dfrac{f'(x)}{f(x)}dx=\int dx\Rightarrow \log |f(x)|=x+c$$

    $$\Rightarrow f(x)=e^{x+c}$$

    $$\therefore f(0)=e^e=1$$

    $$\Rightarrow e=0$$

    $$\therefore f(x)=e^x$$

    Now, $$f(x)+g(x)=x^2$$

    $$\Rightarrow g(x)=x^2-f(x)=x^2-e^x$$

    $$\displaystyle \therefore \int^1_0 f(x) g(x)dx=\int^1_0 e^x(x^2-e^x)dx$$

    $$\displaystyle =\int^1_0 e^x x^2 dx-\int^1_0 e^{2x}dx=I$$ (say)

    Let $$\displaystyle I_1=\int e^x x^2 dx=x^2 \int e^x dx-\int [\dfrac{d}{dx}x^2\int e^x dx]dx$$

    $$\displaystyle =x^2e^x-2\int xe^x dx+c_1$$

    $$\displaystyle =x^2e^x-2x\int e^x dx+2\int [\dfrac{d}{dx} x.\int e^x dx]dx+c_1$$

    $$\displaystyle =x^2e^x-2xe^x+2\int e^x dx+c_2$$

    $$=x^2e^x-2xe^x+2e^x+c_3$$

    $$=e^x[x^2-2x+2]+c_3$$

    $$\therefore I=\left[e^x(x^2-2x+2)-\dfrac{e^{2x}}{2}\right]^1_0$$

    $$=(e^1(1-2+2)-\dfrac{e^2}{2})-(e^0(0-0+2-\dfrac{1}{2}))$$

    $$=e-\dfrac{e^2}{2}-\dfrac{3}{2}=\dfrac{1}{4}(4e-e^2-3)$$

    Hence the answer is (D) None of these.
  • Question 4
    1 / -0
    Define $$f(x) = \dfrac{1}{2} [ |\sin x| + \sin x], 0 < x \le 2\pi$$. The $$f$$ is
    Solution

  • Question 5
    1 / -0
    Let N be the set of positive integers. For all $$n \in N$$, let
    $$f_n = (n + 1)^{1/3} - n^{1/3}$$ and $$A = \left\{n \in N : f_{n +1} < \dfrac{1}{3(n + 1)^{2/3}} < f_n \right\}$$
    Then
    Solution

  • Question 6
    1 / -0
    A Stationary point of $$f(x)=\sqrt{16-x^{2}}$$  is 
    Solution

  • Question 7
    1 / -0
    If $$\int { \dfrac { { 2x }^{ 2 } }{ \left( { x }^{ 2 }+1 \right) ^{ 2 } } } dx=f\left( x \right) +c$$ where f (0) = 0, then
    Solution

  • Question 8
    1 / -0
    $$A\;sationary\;po\operatorname{int} \;of\;f\left( x \right) = \sqrt {16 - {x^2}} \;is$$
    Solution

  • Question 9
    1 / -0
    The slope of the tangent to the curve at a point (x, y) on it is proportional to (x-2). If the slope of the tangent to the curve at  (10,-9) on it -3. The equation of the curve is
    Solution

    $${\textbf{Step -1: Find the value of slope}}{\textbf{.}}$$
                   $${\text{The slope of the tangent to the curve at a point }}\left( {x,y} \right){\text{ on it is proportional to }}\left( {x - 2} \right).$$
                    $$ = \dfrac{{dy}}{{dx}} = m\left( {x - 2} \right)$$
                    $$ = \dfrac{{dy}}{{dx}} = k\left( {x - 2} \right)\left[ {{\text{where }}k{\text{ is a proportionality constant}}} \right]$$
                    $${\text{Slope of the tangent to the curve at }}\left( {10, - 9} \right){\text{ is }} - 3.$$
                    $$ \Rightarrow  - 3 = k\left( {10 - 2} \right)$$
                    $$ \Rightarrow  - 3 = 8k$$
                    $$ \Rightarrow k =  - \dfrac{3}{8}$$
                    $$ \Rightarrow \dfrac{{dy}}{{dx}} =  - \dfrac{3}{8}\left( {x - 2} \right)$$
    $${\textbf{Step -2: Integrate the formed equation and solve it further}}{\textbf{.}}$$
                    $${\text{Integrating both sides,}}$$
                    $$ \Rightarrow y =  - \dfrac{3}{8}\dfrac{{{{\left( {x - 2} \right)}^2}}}{2} + c{\text{  }}.......\left( i \right){\text{  }}\left[ {{\text{Eqaution of curve}}} \right]$$
                    $${\text{Also, }}\left( {10, - 9} \right){\text{ satisfy the equation of curve as it lies on the curve}}{\text{.}}$$
                     $$\therefore  - 9 =  - \dfrac{3}{8}\dfrac{{{{\left( {10 - 2} \right)}^2}}}{2} + c$$
                     $$ \Rightarrow  - 9 =  - \dfrac{3}{{16}} \times {8^2} + c$$
                     $$ \Rightarrow c = 3$$
    $${\textbf{Hence, the equation of the curve is }}\mathbf{y=  - \dfrac{3}{{16}}{\left( {x - 2} \right)^2} + 3.}$$
  • Question 10
    1 / -0
    $$N$$ characters of information are held on magnetic tape, in batches of $$x$$ characters each, the batch processing time is $$\alpha +\beta x^2$$ seconds. $$\alpha $$ and $$\beta $$ are constants. The optical value of $$x$$ for last processing is, 
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now