Self Studies

Integrals Test - 24

Result Self Studies

Integrals Test - 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    01ddx\displaystyle \int_{0}^{1}\frac{d}{dx} tan1(1x )tan^{-1} \left( \displaystyle \frac { 1 }{ x }  \right)

    Solution
    Let I=01ddx\displaystyle I=\int_{0}^{1}\frac{d}{dx} tan1 (1x)dx\tan^{-1} (\displaystyle \frac{1}{x})dx

    ddx\displaystyle \frac{d}{dx} tan1 (1x)=11+(1x)2×(1)x2=11+x2\tan^{-1} (\displaystyle \frac{1}{x}) = \frac{1}{1+(\frac{1}{x})^{2}} \times \frac{(-1)}{x^{2}}=-\frac{1}{1+x^{2}}

    So, I=01 11+x2dx\displaystyle I=\int_{0}^{1} -\frac{1}{1+x^{2}}dx

    =[cot1x]01+C=\displaystyle [\cot^{-1}x]_{0}^{1}+C

    I=π4\displaystyle I=-\frac{\pi}{4}
  • Question 2
    1 / -0
    Evaluate: 0π 4 (tan4x+tan2x)dx\int _{ 0 }^{ \tfrac { \pi  }{ 4 }  }{ ({ \tan }^{ 4 }x+{ \tan }^{ 2 }x)dx }
    Solution
    0π 4 (tan 4x+tan 2x)dx=0π 4 tan 2x(tan 2x+1)dx==0π 4 tan 2x(sec2x)dx\int _{ 0 }^{ \tfrac { \pi  }{ 4 }  }{ ({ \tan  }^{ 4 }x+{ \tan  }^{ 2 }x)dx } \\ = \int _{ 0 }^{ \tfrac { \pi  }{ 4 }  }{ { \tan  }^{ 2 }x({ \tan  }^{ 2 }x+1)dx } \\ = \\ = \int _{ 0 }^{ \tfrac { \pi  }{ 4 }  }{ { \tan  }^{ 2 }x(\sec ^{ 2 }x)dx }

    We know that:
     [f(x)]nf(x)dx=[f(x)]n+1n+1+C=0π 4 tan 2x  ×  sec2x  dx=[tan 3x3]0π 4 =13[tan3(π 4)tan30]=13[10]=13\int { [f(x)]^{ n } } f'(x)dx=\dfrac { [f(x)]^{ n+1 } }{ n+1 } +C\\ = \int _{ 0 }^{ \tfrac { \pi  }{ 4 }  }{ { \tan  }^{ 2 }x\; \times \; \sec ^{ 2 }x\; dx } \\ = \left[\dfrac { { \tan  }^{ 3 }x }{ 3 } \right]_{ 0 }^{ \tfrac { \pi  }{ 4 }  }\\ = \dfrac { 1 }{ 3 } [\tan ^{ 3 }(\tfrac { \pi  }{ 4 }) -\tan ^{ 3 }0]\\ = \dfrac { 1 }{ 3 } [1-0]\\ = \dfrac { 1 }{ 3 }
  • Question 3
    1 / -0
    Evaluate: 1/211xx2dx\displaystyle \int_{1/2}^{1}\frac{1}{\sqrt{x-x^{2}}}dx
    Solution
    1/211xx2dx \displaystyle\int_{1/2}^{1} \dfrac{1}{\sqrt{x-x^2}}dx

    =1/211(12)2(x12)2dx=\displaystyle\int_{1/2}^{1} \dfrac{1}{\sqrt{\left(\dfrac{1}{2}\right)^2-\left(x-\dfrac{1}{2}\right)^2}}dx

    we know that 1a2x2dx=sin1xa\displaystyle\int \dfrac{1}{\sqrt{a^2-x^2}}dx=\sin^{-1} {\dfrac{x}{a}}

    Now, our integration becomes:-

    [sin1(x1212)]1/21\displaystyle\left[\sin^{-1} \left(\dfrac{x-\dfrac{1}{2}}{\dfrac{1}{2}}\right)\right]_{1/2}^{1}

    =[sin11sin10]=\left[\sin^{-1} {1}-\sin^{-1} {0}\right]

    =π2=\dfrac{\pi}{2}

    Hence,answer is option_(C).
  • Question 4
    1 / -0
    If f(x)=sinx+sin2x+sin3xsin2xsin3x 3+4sinx34sinx 1+sinxsinx1f(x)=\begin{vmatrix}\sin x+\sin2x+\sin3x & \sin2x & \sin3x\\ 3+4\sin x & 3 & 4\sin x\\ 1+\sin x & \sin x & 1\end{vmatrix} , then the value of 0π2f(x)dx\displaystyle \int_{0}^{\frac{\pi}2}f(x)dx, is
    Solution
    Using Determinant properties:
    C1C1(C2+C3)C_1 \rightarrow C_1 - (C_2+C_3)

    We get,
     sin xsin 2x sin 3x0 3 4sin x0 sin x 1\begin{vmatrix} \sin\ x &\sin\ 2x  &\sin\ 3x \\0 &3  &4\sin\ x \\0 &\sin\ x  &1 \end{vmatrix}
    =sin x(34sin2x)=\sin\ x(3-4 \sin^{2}x)
    =3 sin x4 sin3x=3\ \sin\ x-4\ \sin^{3}x
    =sin 3x=\sin\ 3x

    0π2sin 3x dx=cos 3x30π2=0+13\displaystyle \int_{0}^{\frac{\pi}{2}}\sin\ 3x\ dx=\left.\dfrac{-\cos\ 3x}{3}\right|_{0}^{\frac{\pi}{2}}=0+\dfrac{1}{3}
    =13=\dfrac{1}{3}
  • Question 5
    1 / -0
    Evaluate: 0π/4tan6xdx\displaystyle \int_{0}^{\pi /4}\tan^{6}xdx
    Solution
    tan6x=tan4x(sec2x1)=tan4xsec2xtan4x\tan^6{x}=\tan^4{x}(\sec^2{x}-1)=\tan^4{x}\sec^2{x}-\tan^4{x}

        tan6x=tan4xsec2xtan2x(sec2x1)\implies\tan^6{x}=\tan^4{x}\sec^2{x}-\tan^2{x}(\sec^2{x}-1)

        tan6x=tan4xsec2xtan2xsec2x+tan2x\implies\tan^6{x}=\tan^4{x}\sec^2{x}-\tan^2{x}\sec^2{x}+\tan^2{x}

        tan6x=tan4xsec2xtan2xsec2x+sec2x1\implies\tan^6{x}=\tan^4{x}\sec^2{x}-\tan^2{x}\sec^2{x}+\sec^2{x}-1

    Now, let z=tanx    dz=sec2xdxz=\tan{x}\implies dz=\sec^2{x}dx    And when x=0,z=0 x=0, z=0 and when x=π4,z=1x=\dfrac{\pi}{4}, z=1

    Hence, 0π/4tan6xdx=0π/4tan4xsec2xdx0π/4tan2xsec2xdx+0π/4sec2xdx0π/41.dx\displaystyle\int_{0}^{\pi/4}\tan^6{x}dx=\int_{0}^{\pi/4}\tan^4{x}\sec^2{x}dx-\int_{0}^{\pi/4}\tan^2{x}\sec^2{x}dx+\int_{0}^{\pi/4} \sec^2{x}dx-\int_{0}^{\pi/4} 1.dx

    =01z4dz01z2dz+01dz0π/41.dx=\displaystyle\int_{0}^{1}z^4dz-\int_{0}^{1}z^2dz+\int_{0}^{1}dz-\int_{0}^{\pi/4}1.dx

    =[z55]01[z33]01+[z]01[x]0π/4=\left[\dfrac{z^5}{5}\right]_{0}^{1}-\left[\dfrac{z^3}{3}\right]_{0}^{1}+\left[z\right]_{0}^{1}-\left[x\right]_{0}^{\pi/4}

    =1513+1π4=\dfrac{1}{5}-\dfrac{1}{3}+1-\dfrac{\pi}{4}

    =1315π4=\dfrac{13}{15}-\dfrac{\pi}{4}
  • Question 6
    1 / -0

    (n=1102n12nsin27xdx)+(n=1102n2n+1sin27(\displaystyle \sum_{n=1}^{10}\int_{-2n-1}^{-2n}\sin^{27}xdx)+(\sum_{n=1}^{10}\int_{2n}^{2n+1}\mathrm{s}in^{27} xdx)=xdx)=
    Solution
    n=1102n12nsin27x dx+n=1102n+12nsin27x dx\sum_{n=1}^{10}\int_{-2n-1}^{-2n}sin^{27}x\ dx+\sum_{n=1}^{10}\int_{2n+1}^{2n}sin^{27}x\ dx
    I=2121sin27x dxI=\int_{-21}^{21}sin^{27}x\ dx
    I=2121sin27x dx2121sin27x dxI=\int_{-21}^{21}sin^{27}x\ dx-\int_{-21}^{21}sin^{27}x\ dx
    I=II=0\to I=-I \Rightarrow I=0
  • Question 7
    1 / -0
    lf In=0π4I_{\mathrm{n}}=\displaystyle \int_{0}^{\dfrac{\pi}{4}} tannxdx\tan^{n} xdx, then limnn[In+In+2]=\displaystyle \lim_{n\rightarrow\infty}n[I_{n}+I_{n+2}]=
    Solution
    Given, In=0π/4tannxdxI_{n}=\int_{0}^{\pi /4}\tan ^{n}x dx
    and we have to find limnn[In+In+2]\lim_{n\rightarrow \infty }n[I_{n}+I_{n+2}]
    Let us first solve the function and get the answer in terms of nn and then apply limit .
    Now n[In+In+2]n[I_{n}+I_{n+2}]
    =n[0π/4tannxdx=n[\int_{0}^{\pi /4}\tan^{n}x dx   +0π/4tann+2xdx]+\int_{0}^{\pi /4}\tan^{n+2}xdx]
    =n[0π/4(tannx+tann+2x)dx]=n[\int_{0}^{\pi/4}(\tan^{n}x+\tan^{n+2}x)dx]
    Since the limits of both the integrals is same it can be combined into one integral 
    =n[0π/4(tannx(1+tan2x)dx]=n[\int_{0}^{\pi/4}(\tan^{n}x(1+\tan^{2}x)dx]
    Since 1+tan2x=sec2x1+\tan^{2}x=\sec^{2}x 
    Therefore, =n[0π/4tannxsec2x]=n[\int_{0}^{\pi /4}\tan^{n}x\sec^{2}x]
    Taking tanx=t\tan x=t
    dx=sec2xdtdx=\sec^{2}xdt
    Upper limit becomes tan(π/4)=1\tan(\pi/4)=1 and lower limit becomes tan(0)=0\tan(0)=0
    Using this the integrand becomes 
    n01tndtn\int_{0}^{1} t^{n}dt
    =n(tn+1/n+1)01=n(t^{n+1}/n+1)_{0}^{1}
    Substituting limits, we get nn+1\dfrac {n}{n+1}
    Now applying limit tending to infinity to this value 
    limnn[In+In+2]\lim_{n\rightarrow \infty }n[I_{n}+I_{n+2}] 
    =limnnn+1=\lim_{n \to \infty }\dfrac {n}{n+1}
    =1=1
  • Question 8
    1 / -0
    The value of 35x2x24dx\displaystyle \int_{3}^{5}\frac{x^{2}}{x^{2}-4} dx is
    Solution
    35x2x24dx\displaystyle \int_{3}^{5}\dfrac{x^{2}}{x^{2}-4}dx

    $$\displaystyle =\int_{3}^{5}1dx+4\int_{3}^{5}\dfrac{1}{x^{2}-4}dx=2+4.\dfrac{1}
    {2}log(\dfrac{x-2}{x+2})|_{3}^{5}$$

    2+2[log(3/7)log(1/5)]\displaystyle 2+2[log(3/7)-log(1/5)]

    =2(1+log(157))\displaystyle =2(1+log(\dfrac{15}{7}))
    Hence, option 'B' is correct.
  • Question 9
    1 / -0
    Evaluate the integral
    1271x(2x7+1)dx\displaystyle \int_{1}^{\sqrt[7]{2}}\frac{1}{x(2x^{7}+1)} dx
    Solution

    1271x(2x7+1)dx=1271x8(2+1/x7)dx\displaystyle \int_{1}^{\sqrt[7]{2}}\dfrac{1}{x(2x^{7}+1)}dx=\displaystyle \int_{1}^{\sqrt[7]{2}}\dfrac{1}{x^{8}(2+1/x^{7})dx}

    1/x7=17x8dx=dt1/x^{7}= 1\Rightarrow\dfrac{-7}{x^{8}}dx=dt

    dxx8dx7\Rightarrow \dfrac{dx}{x^{8}}-\dfrac{dx}{7}

    1711/2dt(2+t)=171/21[log(2+t)]1/21\Rightarrow \dfrac{1}{-7}\displaystyle \int_{1}^{1/2}\dfrac{dt}{(2+t)}=\dfrac{1}{7}\displaystyle \int_{1/2}^{1}\left [ \log(2+t) \right ]_{1/2}^{1}

    =17[log(3)log52]=\dfrac{1}{7} \left [ \log(3)-\log\dfrac{5}{2} \right ]

    =17 log65=\dfrac{1}{7}  \log \dfrac{6}{5}

  • Question 10
    1 / -0
    Evalaute: π/2π/2cosxcos3x dx\displaystyle \int_{-\pi/2}^{\pi/2}\sqrt{\cos x-\cos^{3}x}\ dx
    Solution
    π/2π/2cosxcos3xdx\displaystyle\int_{-\pi/2}^{\pi/2}\sqrt{\cos{x}-\cos^3{x}}dx

    =π/2π/2cosxsinxdx=\displaystyle\int_{-\pi/2}^{\pi/2}\sqrt{\cos{x}}|\sin{x}|dx

    Now, the given function is an even function:-

    =20π/2cosxsinxdx=2\displaystyle\int_{0}^{\pi/2}\sqrt{\cos{x}}\sin{x}dx    (since,sinx \sin{x} is positive in interval (0,π2) (0,\dfrac{\pi}{2}))

    Let, z=cosx    dz=sinxdxz=\cos{x}\implies dz=-\sin{x}dx
    And whenx=0,z=1 x=0, z=1 and when x=π2,z=0 x=\dfrac{\pi}{2}, z=0

    Hence, integration becomes:-

    210zdz=01zdz2\displaystyle\int_{1}^{0} -\sqrt{z}dz=\int_{0}^{1} \sqrt{z}dz

    =2×23[z3/2]01=2\times\dfrac{2}{3}\displaystyle\left[z^{3/2}\right]_{0}^{1}

    =43=\dfrac{4}{3}

    Hence, answer is option-(C).
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now