Self Studies

Integrals Test - 24

Result Self Studies

Integrals Test - 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\displaystyle \int_{0}^{1}\frac{d}{dx}$$ $$tan^{-1} \left( \displaystyle \frac { 1 }{ x }  \right) $$

    Solution
    Let $$\displaystyle I=\int_{0}^{1}\frac{d}{dx}$$ $$\tan^{-1} (\displaystyle \frac{1}{x})dx$$

    $$\displaystyle \frac{d}{dx}$$ $$\tan^{-1} (\displaystyle \frac{1}{x}) = \frac{1}{1+(\frac{1}{x})^{2}} \times \frac{(-1)}{x^{2}}=-\frac{1}{1+x^{2}}$$

    So, $$\displaystyle I=\int_{0}^{1} -\frac{1}{1+x^{2}}dx$$

    $$=\displaystyle [\cot^{-1}x]_{0}^{1}+C$$

    $$\displaystyle I=-\frac{\pi}{4}$$
  • Question 2
    1 / -0
    Evaluate: $$\int _{ 0 }^{ \tfrac { \pi  }{ 4 }  }{ ({ \tan }^{ 4 }x+{ \tan }^{ 2 }x)dx }$$
    Solution
    $$\int _{ 0 }^{ \tfrac { \pi  }{ 4 }  }{ ({ \tan  }^{ 4 }x+{ \tan  }^{ 2 }x)dx } \\ = \int _{ 0 }^{ \tfrac { \pi  }{ 4 }  }{ { \tan  }^{ 2 }x({ \tan  }^{ 2 }x+1)dx } \\ = \\ = \int _{ 0 }^{ \tfrac { \pi  }{ 4 }  }{ { \tan  }^{ 2 }x(\sec ^{ 2 }x)dx } $$

    We know that:
     $$\int { [f(x)]^{ n } } f'(x)dx=\dfrac { [f(x)]^{ n+1 } }{ n+1 } +C\\ = \int _{ 0 }^{ \tfrac { \pi  }{ 4 }  }{ { \tan  }^{ 2 }x\; \times \; \sec ^{ 2 }x\; dx } \\ = \left[\dfrac { { \tan  }^{ 3 }x }{ 3 } \right]_{ 0 }^{ \tfrac { \pi  }{ 4 }  }\\ = \dfrac { 1 }{ 3 } [\tan ^{ 3 }(\tfrac { \pi  }{ 4 }) -\tan ^{ 3 }0]\\ = \dfrac { 1 }{ 3 } [1-0]\\ = \dfrac { 1 }{ 3 }$$
  • Question 3
    1 / -0
    Evaluate: $$\displaystyle \int_{1/2}^{1}\frac{1}{\sqrt{x-x^{2}}}dx$$
    Solution
    $$ \displaystyle\int_{1/2}^{1} \dfrac{1}{\sqrt{x-x^2}}dx$$

    $$=\displaystyle\int_{1/2}^{1} \dfrac{1}{\sqrt{\left(\dfrac{1}{2}\right)^2-\left(x-\dfrac{1}{2}\right)^2}}dx$$

    we know that $$\displaystyle\int \dfrac{1}{\sqrt{a^2-x^2}}dx=\sin^{-1} {\dfrac{x}{a}}$$

    Now, our integration becomes:-

    $$\displaystyle\left[\sin^{-1} \left(\dfrac{x-\dfrac{1}{2}}{\dfrac{1}{2}}\right)\right]_{1/2}^{1}$$

    $$=\left[\sin^{-1} {1}-\sin^{-1} {0}\right]$$

    $$=\dfrac{\pi}{2}$$

    Hence,answer is option_(C).
  • Question 4
    1 / -0
    If $$f(x)=\begin{vmatrix}\sin x+\sin2x+\sin3x & \sin2x & \sin3x\\ 3+4\sin x & 3 & 4\sin x\\ 1+\sin x & \sin x & 1\end{vmatrix} $$, then the value of $$\displaystyle \int_{0}^{\frac{\pi}2}f(x)dx$$, is
    Solution
    Using Determinant properties:
    $$C_1 \rightarrow C_1 - (C_2+C_3)$$

    We get,
    $$\begin{vmatrix} \sin\ x &\sin\ 2x  &\sin\ 3x \\0 &3  &4\sin\ x \\0 &\sin\ x  &1 \end{vmatrix}$$
    $$=\sin\ x(3-4 \sin^{2}x)$$
    $$=3\ \sin\ x-4\ \sin^{3}x$$
    $$=\sin\ 3x$$

    $$\displaystyle \int_{0}^{\frac{\pi}{2}}\sin\ 3x\ dx=\left.\dfrac{-\cos\ 3x}{3}\right|_{0}^{\frac{\pi}{2}}=0+\dfrac{1}{3}$$
    $$=\dfrac{1}{3}$$
  • Question 5
    1 / -0
    Evaluate: $$\displaystyle \int_{0}^{\pi /4}\tan^{6}xdx$$
    Solution
    $$\tan^6{x}=\tan^4{x}(\sec^2{x}-1)=\tan^4{x}\sec^2{x}-\tan^4{x}$$

    $$\implies\tan^6{x}=\tan^4{x}\sec^2{x}-\tan^2{x}(\sec^2{x}-1)$$

    $$\implies\tan^6{x}=\tan^4{x}\sec^2{x}-\tan^2{x}\sec^2{x}+\tan^2{x}$$

    $$\implies\tan^6{x}=\tan^4{x}\sec^2{x}-\tan^2{x}\sec^2{x}+\sec^2{x}-1$$

    Now, let $$z=\tan{x}\implies dz=\sec^2{x}dx$$    And when $$ x=0, z=0$$ and when $$x=\dfrac{\pi}{4}, z=1$$

    Hence, $$\displaystyle\int_{0}^{\pi/4}\tan^6{x}dx=\int_{0}^{\pi/4}\tan^4{x}\sec^2{x}dx-\int_{0}^{\pi/4}\tan^2{x}\sec^2{x}dx+\int_{0}^{\pi/4} \sec^2{x}dx-\int_{0}^{\pi/4} 1.dx$$

    $$=\displaystyle\int_{0}^{1}z^4dz-\int_{0}^{1}z^2dz+\int_{0}^{1}dz-\int_{0}^{\pi/4}1.dx$$

    $$=\left[\dfrac{z^5}{5}\right]_{0}^{1}-\left[\dfrac{z^3}{3}\right]_{0}^{1}+\left[z\right]_{0}^{1}-\left[x\right]_{0}^{\pi/4}$$

    $$=\dfrac{1}{5}-\dfrac{1}{3}+1-\dfrac{\pi}{4}$$

    $$=\dfrac{13}{15}-\dfrac{\pi}{4}$$
  • Question 6
    1 / -0

    $$(\displaystyle \sum_{n=1}^{10}\int_{-2n-1}^{-2n}\sin^{27}xdx)+(\sum_{n=1}^{10}\int_{2n}^{2n+1}\mathrm{s}in^{27}$$ $$xdx)=$$
    Solution
    $$\sum_{n=1}^{10}\int_{-2n-1}^{-2n}sin^{27}x\ dx+\sum_{n=1}^{10}\int_{2n+1}^{2n}sin^{27}x\ dx$$
    $$I=\int_{-21}^{21}sin^{27}x\ dx$$
    $$I=\int_{-21}^{21}sin^{27}x\ dx-\int_{-21}^{21}sin^{27}x\ dx$$
    $$\to I=-I \Rightarrow I=0$$
  • Question 7
    1 / -0
    lf $$I_{\mathrm{n}}=\displaystyle \int_{0}^{\dfrac{\pi}{4}}$$ $$\tan^{n} xdx$$, then $$\displaystyle \lim_{n\rightarrow\infty}n[I_{n}+I_{n+2}]=$$
    Solution
    Given, $$I_{n}=\int_{0}^{\pi /4}\tan ^{n}x dx$$
    and we have to find $$\lim_{n\rightarrow \infty }n[I_{n}+I_{n+2}]$$
    Let us first solve the function and get the answer in terms of $$n$$ and then apply limit .
    Now $$n[I_{n}+I_{n+2}]$$
    $$=n[\int_{0}^{\pi /4}\tan^{n}x dx $$  $$+\int_{0}^{\pi /4}\tan^{n+2}xdx]$$
    $$=n[\int_{0}^{\pi/4}(\tan^{n}x+\tan^{n+2}x)dx]$$
    Since the limits of both the integrals is same it can be combined into one integral 
    $$=n[\int_{0}^{\pi/4}(\tan^{n}x(1+\tan^{2}x)dx]$$
    Since $$1+\tan^{2}x=\sec^{2}x$$ 
    Therefore, $$=n[\int_{0}^{\pi /4}\tan^{n}x\sec^{2}x]$$
    Taking $$\tan x=t$$
    $$dx=\sec^{2}xdt $$
    Upper limit becomes $$\tan(\pi/4)=1$$ and lower limit becomes $$\tan(0)=0$$
    Using this the integrand becomes 
    $$n\int_{0}^{1} t^{n}dt$$
    $$=n(t^{n+1}/n+1)_{0}^{1}$$
    Substituting limits, we get $$\dfrac {n}{n+1}$$
    Now applying limit tending to infinity to this value 
    $$\lim_{n\rightarrow \infty }n[I_{n}+I_{n+2}]$$ 
    $$=\lim_{n \to \infty }\dfrac {n}{n+1}$$
    $$=1$$
  • Question 8
    1 / -0
    The value of $$\displaystyle \int_{3}^{5}\frac{x^{2}}{x^{2}-4} dx$$ is
    Solution
    $$\displaystyle \int_{3}^{5}\dfrac{x^{2}}{x^{2}-4}dx$$

    $$\displaystyle =\int_{3}^{5}1dx+4\int_{3}^{5}\dfrac{1}{x^{2}-4}dx=2+4.\dfrac{1}
    {2}log(\dfrac{x-2}{x+2})|_{3}^{5}$$

    $$\displaystyle 2+2[log(3/7)-log(1/5)]$$

    $$\displaystyle =2(1+log(\dfrac{15}{7}))$$
    Hence, option 'B' is correct.
  • Question 9
    1 / -0
    Evaluate the integral
    $$\displaystyle \int_{1}^{\sqrt[7]{2}}\frac{1}{x(2x^{7}+1)} dx$$
    Solution

    $$\displaystyle \int_{1}^{\sqrt[7]{2}}\dfrac{1}{x(2x^{7}+1)}dx=\displaystyle \int_{1}^{\sqrt[7]{2}}\dfrac{1}{x^{8}(2+1/x^{7})dx}$$

    $$1/x^{7}= 1\Rightarrow\dfrac{-7}{x^{8}}dx=dt$$

    $$\Rightarrow \dfrac{dx}{x^{8}}-\dfrac{dx}{7}$$

    $$\Rightarrow \dfrac{1}{-7}\displaystyle \int_{1}^{1/2}\dfrac{dt}{(2+t)}=\dfrac{1}{7}\displaystyle \int_{1/2}^{1}\left [ \log(2+t) \right ]_{1/2}^{1}$$

    $$=\dfrac{1}{7} \left [ \log(3)-\log\dfrac{5}{2} \right ]$$

    $$=\dfrac{1}{7}  \log \dfrac{6}{5}$$

  • Question 10
    1 / -0
    Evalaute: $$\displaystyle \int_{-\pi/2}^{\pi/2}\sqrt{\cos x-\cos^{3}x}\ dx$$
    Solution
    $$\displaystyle\int_{-\pi/2}^{\pi/2}\sqrt{\cos{x}-\cos^3{x}}dx$$

    $$=\displaystyle\int_{-\pi/2}^{\pi/2}\sqrt{\cos{x}}|\sin{x}|dx$$

    Now, the given function is an even function:-

    $$=2\displaystyle\int_{0}^{\pi/2}\sqrt{\cos{x}}\sin{x}dx$$    (since,$$ \sin{x}$$ is positive in interval $$ (0,\dfrac{\pi}{2})$$)

    Let, $$z=\cos{x}\implies dz=-\sin{x}dx$$
    And when$$ x=0, z=1$$ and when $$ x=\dfrac{\pi}{2}, z=0$$

    Hence, integration becomes:-

    $$2\displaystyle\int_{1}^{0} -\sqrt{z}dz=\int_{0}^{1} \sqrt{z}dz$$

    $$=2\times\dfrac{2}{3}\displaystyle\left[z^{3/2}\right]_{0}^{1}$$

    $$=\dfrac{4}{3}$$

    Hence, answer is option-(C).
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now