Self Studies

Differential Equations Test - 10

Result Self Studies

Differential Equations Test - 10
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Find the value of \(y(\frac{1}{2})\) for the differential equation \(d y=x \sec \frac{y}{x} d x+\frac{y}{x} d x\)with initial condition \(y(1)=\) \(\frac{\pi}{2 }?\)

    Solution

    Given,

    \(d y=x \sec \frac{y}{x} d x+\frac{y}{x} d x\)

    \(\frac{d y}{d x}=x \sec \frac{y}{x}+\frac{y}{x} \)

    \(\text { Put } y=v x \text {, and } \frac{d y}{d x}=v+x \frac{d v}{d x} \)

    \(v+x \frac{d v}{d x}=x \sec v+v\)

    \(\frac{d v}{d x}=\sec v\)

    \(\cos v d v=d x\)

    By integrating both sides we get,

    \(\int \cos v d v=\int d x\) \(\sin v=x+c\)

    Put \(v=\frac{y}{x}\) in the above equation we get

    \(\sin \frac{y}{x}=x+c\)

    Put \(y(1)=\frac{\pi}{ 2}\) in the above equation we get \(c=0\)

    \(y=x \sin ^{-1} x\)

    Put \(x=\frac{1}{2}\) in the above equation we get

    \(y=\frac{1}{2} \sin ^{-1} \frac{1}{2}\)

    \(=\frac{\pi}{12}\)

    Hence, the correct option is (A).

  • Question 2
    1 / -0

    Find the general solution of given differential equation \(\frac{x d y}{d x}+3 y=4 x^{3}\) ?

    Solution

    Given,

    \(\frac{x d y}{d x}+3 y=4 x^{3}\)...(i)

    \(\Rightarrow \frac{ dy }{ d x}+\frac{3 y }{ x }=4 x ^{2}\)

    By comparing equation (i) with \(\frac{ dy }{ dx }+ Py = Q\) we get,

    \(P=\frac{3}{x}\) and \(Q=4 x^{2}\)

    \(\Rightarrow I.F. =e^{\int P d x}=e^{\int \frac{3}{x} dx }\)\(\quad\quad(\because \int\frac{1}{x}=\log  x)\)

    \(\Rightarrow I. F .=e^{3 \log x}\)

    \(\Rightarrow I. F. =e^{\log x^{3}}\)

    \(\Rightarrow I.F. =x^{3} (\because e^{\log x}=x)\)

    Now general solution will be,

    \( y . \text { (I. F. })=\int( Q .( I . F )) dx + c\)

    \(\Rightarrow y . \left( x ^{3}\right)=\int\left(4 x ^{2} ×\left( x ^{3}\right)\right) d x + c\)

    \(\Rightarrow x ^{3} . y =\int 4 x ^{5} dx + c\)

    \(\Rightarrow x ^{3} . y = \frac{4 x ^{6}}{6}+ c\)

    \(\Rightarrow x^{3} . y=\frac{2}{3} x^{6}+c\)

    Hence, the correct option is (C).

  • Question 3
    1 / -0

    Integrating factor of \(\left(1-x^{2}\right) \frac{d y}{d x}-x y=1\) is:

    Solution

    Given,

    \(\left(1-x^{2}\right) \frac{d y}{d x}-x y=1\)....(i)

    Dividing both sides in equation (i) by \(1-x^{2}\), we will be able to get it in the standard form.

    \(\frac{\mathrm{dy}}{\mathrm{dx}}+\left(\frac{-\mathrm{x}}{1-\mathrm{x}^{2}}\right) \mathrm{y}=\frac{1}{1-\mathrm{x}^{2}} \)

    \(\mathrm{P}=\frac{-\mathrm{x}}{1-\mathrm{x}^{2}}\)...(ii)

    Let's calculate \(\int P d x\).

    \(\int P d x=\int \frac{-x}{1-x^{2}} d x\)

    Substituting \(1-x^{2}=t\) in equation (ii), so that \(-2 x d x=d t\), we get:

    \(\int P d x=\frac{1}{2} \int \frac{1}{t} d t\)

    Using \(\int \frac{1}{x} \mathrm{~d} \mathrm{x}=\log \mathrm{x}+\mathrm{C}\) and ignoring the constant \(\mathrm{C}\), we get:

    \(\int \mathrm{P} \mathrm{dx}=\frac{1}{2} \log \mathrm{t}\)...(iii)

    By substituting \(1-x^{2}=t\) in equation(iii) we get:

    \(\int P d x=\frac{1}{2} \log \left(1-x^{2}\right)\)

    \(\Rightarrow \int P d x=\log \sqrt{1-x^{2}}\)

    Now, the integrating factor will be:

    \(F=e^{\int P d x}\)

    \(\Rightarrow F=e^{\log \sqrt{1-x^{2}}}\)

    \(\Rightarrow F=\sqrt{1-x^{2}}\), which is the required integrating factor.

    Hence, the correct option is (D).

  • Question 4
    1 / -0

    Find the degree and order of given equation:

    \(\frac{d^{3} y}{d x^{3}}=\frac{d^{2} y}{d x^{2}}+\sin 60^{\circ} \)

    Solution

    Given,

    \(\frac{ d ^{3} y}{d x^{3}}=\frac{d^{2} y}{d x^{2}}+\sin 60^{\circ}\)\(\quad(\because \sin 60^{\circ} = \frac{\sqrt{3}}{2})\)

    \(\Rightarrow \frac{d^{3} y}{d x^{3}}=\frac{d^{2} y}{d x^{2}}+\frac{\sqrt{3}}{2}\)

    Here, the highest derivative is \(\frac{ d ^{3} y}{ d x^{3}}\) so the order is 3.

    The power of the highest derivative is one so the degree is 1.

    \(\therefore\) Degree and order is \(1,3\).

    Hence, the correct option is (A).

  • Question 5
    1 / -0

    General solution of \(\left(x^{2}+y^{2}\right) d x-2 x y d y=0\) is:

    Solution

    Given,

    \(\left(x^{2}+y^{2}\right) d x=2 x y d y\)

    \(\Rightarrow \frac{d y}{ d x}=\frac{(x^{2}+y^{2})}{2 x y}\) is homogeneous.

    Put \(y=v x\)

    \(\Rightarrow \frac{\mathrm{d} y}{d x}=v+\frac{x d v }{d x}\)

    \(\Rightarrow v+x \frac{d v}{d x}=\frac{x^{2}+v^{2} x^{2}}{2 v x^{2}}=\frac{x^{2}\left(1+v^{\circ}\right)}{2 v x^{2}} \)

    \(\Rightarrow x \frac{d v}{d x}=\frac{1+v^{2}}{2 v}-v=\frac{1-v^{2}}{2 v} \)

    \(\Rightarrow \frac{2 v}{1-v^{2}} d v=\frac{1}{x} d x\)

    \(\Rightarrow-\log \left(1-v^{2}\right)=\log x+\log c \)

    \(\Rightarrow \log [\frac{1 }{(1-v^{2})}]=\log x+\log c \)

    \(\Rightarrow [\frac{1}{(1-v^{2})}]=c x\)

    \(\Rightarrow [\frac{1}{(1-\frac{y^{2}}{x^{2}})}]=c x\)

    \(\Rightarrow [\frac{x^{2}}{(x^{2}-y^{2})}]=c x\)

    \(\Rightarrow x^{2}=c x\left(x^{2}-y^{2}\right)\) is the general solution of the differential equation.

    Hence, the correct option is (C).

  • Question 6
    1 / -0

    Find general solution of \(\frac{\mathrm{dx}}{\mathrm{dy}}=\left(1+\mathrm{x}^{2}\right)\left(1+\mathrm{y}^{2}\right)\)

    Solution

    Given,

    \(\frac{\mathrm{d} x}{\mathrm{~d} y}=\left(1+\mathrm{x}^{2}\right)\left(1+\mathrm{y}^{2}\right)\)

    \(\Rightarrow \frac{\mathrm{d} \mathrm{x}}{\left(1+\mathrm{x}^{2}\right)}=\left(1+\mathrm{y}^{2}\right) \mathrm{dy} \)

    \(\Rightarrow\left(1+\mathrm{y}^{2}\right) \mathrm{dy}=\frac{\mathrm{d} \mathrm{x}}{\left(1+\mathrm{x}^{2}\right)}\)....(i)

    Integrating both sides in equation (i) we get,

    \(\int\left(1+y^{2}\right) d y=\int \frac{d x}{\left(1+x^{2}\right)} \)

    \(\Rightarrow y+\frac{y^{3}}{3}=\tan ^{-1} x+c\)

    Hence, the correct option is (B).

  • Question 7
    1 / -0

    Form the differential equation of \(y=a e^{3 x} \cos (x+b)\) Where \(y^{\prime}=\frac{d y}{d x}\) and \(y^{n}=\frac{d^{2} y}{d x^{2}}\)

    Solution

    Given equation is \(y=a e^{3 x} \cos (x+b)\)

    There are two constants a and b so differentiate two times Differentiating wr.t \(\mathrm{x}\), we get

    \(\Rightarrow y^{\prime}=3 a e^{3 x} \cos (x+b)-a e^{3 x} \sin (x+b)\)

    \(\Rightarrow y^{\prime}=3 y-a e^{3 x} \sin (x+b)\)

    \(\Rightarrow a e^{3 x} \sin (x+b)=3 y-y^{\prime}\)

    Differentiating again w.r.t \(\mathrm{x}\), we get

    \(\Rightarrow 3 \mathrm{ae}^{3 x} \sin (x+b)+a e^{3 x} \cos (x+b)=3 y^{\prime}-y^{\prime \prime}\)

    \(\Rightarrow 3\left(3 y-y^{\prime}\right)+y-3 y^{\prime}-y^{n}=0\)

    \(\Rightarrow 9 y-3 y^{\prime}+y-3 y^{\prime}-y^{n}=0\)

    \(\Rightarrow y^{\prime \prime}+6 y^{\prime}-10 y=0\)

    Hence, the correct option is (C).

  • Question 8
    1 / -0

    The solution of the differential equation \(\frac{\mathrm{dy}}{\mathrm{dx}}=\sec \left(\frac{\mathrm{y}}{\mathrm{x}}\right)+\frac{\mathrm{y}}{\mathrm{x}}\) is:

    Solution

    Given,

    \(\frac{d y}{d x}=\sec \left(\frac{y}{x}\right)+\frac{y}{x} \)

    \(\text { Let } \frac{y}{x}=t \)

    \(\Rightarrow y=x t\)

    Differentiating with respect to \(\mathrm{x}\), we get

    \(\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{x} \frac{\mathrm{dt}}{\mathrm{dx}}+\mathrm{t}\)

    Now,

    \(\mathrm{x} \frac{\mathrm{d} t}{\mathrm{dx}}+\mathrm{t}=\sec \mathrm{t}+\mathrm{t}\)

    \(\Rightarrow \mathrm{x} \frac{\mathrm{dt}}{\mathrm{dx}}=\sec \mathrm{t}\)

    \(\Rightarrow \frac{\mathrm{dt}}{\sec \mathrm{t}}=\frac{\mathrm{dx}}{\mathrm{x}}\)

    Integrating both sides, we get

    \(\Rightarrow \int \frac{\mathrm{dt}}{\sec t}=\int \frac{\mathrm{dx}}{\mathrm{x}}\)

    \(\Rightarrow \int \cos \mathrm{t} \mathrm{dt}=\int \frac{\mathrm{dx}}{\mathrm{x}} \)

    \(\Rightarrow \sin \mathrm{t}=\log \mathrm{x}+\log \mathrm{c}\)

    \(\Rightarrow \sin \mathrm{t}=\log (\mathrm{cx}) \quad(\because \log \mathrm{m}+\log \mathrm{n}=\log (\mathrm{mn})) \)

    \(\therefore \sin \left(\frac{\mathrm{y}}{\mathrm{x}}\right)=\log (\mathrm{cx})\)

    Hence, the correct option is (C).

  • Question 9
    1 / -0

    The degree of the differential equation

    \(\frac{d^{2} y}{d x^{2}}+3\left(\frac{d y}{d x}\right)^{2}=x^{2} \log \left(\frac{d^{2} y}{d x^{2}}\right)\)

    Solution

    Given,

    \(\frac{d^{2} y}{d x^{2}}+3\left(\frac{d y}{d x}\right)^{2}=x^{2} \log \left(\frac{d^{2} y}{d x^{2}}\right)\)

    For the given differential equation the highest order derivative is 2.

    The given differential equation is not a polynomial equation because it involved a logarithmic term in its derivatives so, its degree is not defined.

    Hence, the correct option is (D).

  • Question 10
    1 / -0

    The differential equation representing the family of curves \(y=a \sin (\lambda x+a)\) is:

    Solution

    Given,

    \(y=a \sin (\lambda x+a)\)....(i)

    Now differentiating both sides equation (i) we get,

    \(\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}\)=\(\frac{d}{dx}(a \sin (\lambda x+a))\)

    \(\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}\) = \(\mathrm{a} \cos (\lambda \mathrm{x}+\alpha)\)×\(\frac{d}{dx}(\lambda \mathrm{x}+\alpha)\)

    \(\Rightarrow \frac{\mathrm{dy}}{\mathrm{d} \mathrm{x}}=\mathrm{a} \lambda \cos (\lambda \mathrm{x}+\alpha)\)

    Again differentiating both sides we get,

    \(\Rightarrow \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=-\mathrm{a} \lambda^{2} \sin (\lambda x+\mathrm{a})\)

    From equation (i) we get,

    \(\Rightarrow \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{d} \mathrm{x}^{4}}=-\lambda^{2} \mathrm{y} \)

    \(\therefore \frac{\mathrm{d}^{2} y}{\mathrm{~d} \mathrm{x}^{2}}+\lambda^{2} \mathrm{y}=0\)

    Hence, the correct option is (A).

  • Question 11
    1 / -0

    The differential equation of all parabolas whose axis is \(y\)-axis is:

    Solution

    Given,

    Equation of parabola with \(\mathrm{y}\)-axis and vertex \((0, \mathrm{k})\) is:

    \((x-0)^{2}=4 a(y-k)\)

    \(\Rightarrow x^{2}=4 a y-4 a k\)

    Taking derivative on both side, we get,

    \(\frac{d}{dx}(x^{2})=\frac{d}{dx}(4 a y-4 a k)\)

    \(\Rightarrow 2 {x}=4 \mathrm{a} \frac{\mathrm{dy}}{\mathrm{dx}} \)

    \(\Rightarrow \frac{1}{\mathrm{x}} \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2 \mathrm{a}}\)

    Again taking derivative on both side, we get,

    \(\Rightarrow \frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{1}{\mathrm{x}} \frac{\mathrm{dy}}{\mathrm{dx}}\right)=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{1}{2 \mathrm{a}}\right) \)

    \(\Rightarrow \frac{1}{\mathrm{x}} \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}+\frac{\mathrm{dy}}{\mathrm{dx}}\left(\frac{-1}{\mathrm{x}^{2}}\right)=0\)\

    \(\Rightarrow \mathrm{x} × \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}-\frac{\mathrm{dy}}{\mathrm{dx}}=0\)

    Hence, the correct option is (A).

  • Question 12
    1 / -0

    The differential form of the equation \(\mathrm{y}^{2}+(\mathrm{x}-\mathrm{b})^{2}=\mathrm{c}\):

    Solution

    Given,

    \(\mathrm{y}^{2}+(\mathrm{x}-\mathrm{b})^{2}=\mathrm{c}\)

    There are two constants \(\mathrm{b}\) and \(\mathrm{c}\) so differentiate two times

    Differentiating w.r.t \(\mathrm{x}\)

    \(2 y \frac{d y}{d x}+2(x-b)=0 \)

    \(y \frac{d y}{d x}=b-x\)

    Differentiating again w.r.t \(\mathrm{x}\)

    \(\left(\frac{d y}{d x}\right)^{2}+y \frac{d^{2} y}{d x^{2}}=-1\)

    \(y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}+1=0\)

    Hence, the correct option is (C).

  • Question 13
    1 / -0

    General solution of differential equation \(\frac{ dy }{ d x}+ y =1,( y \neq 1)\), is:

    Solution

    Given,

    \(\frac{ dy }{ dx }+ y =1\)

    on seprating the variables we get,

    \(\frac{ dy }{1- y }= dx\)

    On integrating, we get,

    \(\int\frac{ dy }{1- y }= \int dx\)

    \(\Rightarrow-\log (1-y)=x+C\)

    \(\Rightarrow \log (1-y)^{-1}=x+C \quad\left[m \log n=\log n^{m}\right]\)

    \(\Rightarrow \log \left|\frac{1}{1-y}\right|=x+C\)

    Hence, the correct option is (A).

  • Question 14
    1 / -0

    Find general solution of \(\left(\mathrm{y} \frac{\mathrm{d} y}{\mathrm{dx}}-\frac{1}{\mathrm{x}}\right)=0\):

    Solution

    Given,

    \(\left(y \frac{d y}{d x}-\frac{1}{x}\right)=0\)

    \(\Rightarrow y \frac{d y}{d x}=\frac{1}{x}\)

    \(\Rightarrow y d y=\frac{d x}{x}\)...(i)

    Integrating both sides in equation (i) we get,

    \(\Rightarrow \frac{y^{2}}{2}=\log x+\mathrm{c}\)

    Hence, the correct option is (C).

  • Question 15
    1 / -0

    Find the degree and order of differential equation:

    \(y ^{\prime \prime \prime}-\sin \left(y^{\prime}\right)+y=0\)

    Solution

    Given,

    \(y^{\prime \prime \prime}-\sin \left(y^{\prime}\right)+y=0\)

    In the given equation the polynomial equation cannot be formed in \(y ^{\prime}\), so order and degree cannot be defined.

    Hence, the correct option is (D).

  • Question 16
    1 / -0

    The differential equation of the family of curves \(y=c_{1} e^{x}+c_{2} e^{-x}\) is:

    Solution

    Given,

    \(y=c_{1} e^{x}+c_{2} e^{-x}\)

    Differentiating w.r.t. \(x\) we get,

    \(\frac{d y}{d x}=\frac{d}{d x} c_{1} e^{x}+\frac{d}{d x} c_{2} e^{-x}\)

    \(\Rightarrow \frac{d y}{d x}=c_{1} e^{x}-c_{2} e^{-x}\)

    \(\Rightarrow \frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}\left(c_{1} e^{x}-c_{2} e^{-x}\right)\)

    \(\Rightarrow \frac{d^{2} y}{d x^{2}}=c_{1} e^{x}+c_{2} \mathrm{e}^{-x}=y\)

    \(\Rightarrow \frac{d^{2} y}{d x^{2}}-y=0\)

    Hence, the correct option is (B).

  • Question 17
    1 / -0

    The solution of the differential equation \(\frac{\mathrm{d} y}{\mathrm{dx}}=2^{x-1}\) is:

    Solution

    Given,

    \(\frac{\mathrm{dy}}{\mathrm{dx}}=2^{\mathrm{x}-1}\)

    \(\Rightarrow \frac{d y}{d x}=\frac{2^{x}}{2} \)

    \(\Rightarrow 2 d y=2^{x} \mathrm{dx}\)

    Now, variables are separated.

    Integrating both sides, we get

    \(\Rightarrow 2 \int d y=\int 2^{x} d x\) \(\quad(\because\int a^xdx = \frac{a^x}{loga})\)

    \(\Rightarrow 2 y=\frac{1}{\log2} 2^{x}+c\)

    Hence, the correct option is (C).

  • Question 18
    1 / -0

    The differential equation representing the family of curves \(y=a \sin (\lambda x+a)\) is:

    Solution

    Given:

    \(y=a \sin (\lambda x+a)\)...(i)

    Now differentiating both sides, we get

    \(\Rightarrow \frac{d y}{d x}=\frac{a d \sin (\lambda x+\alpha)}{d(\lambda x+\alpha)} \times \frac{\mathrm{d}\left(\lambda_{x}+\alpha\right)}{d x}\)

    \(\Rightarrow \frac{\mathrm{dy}}{\mathrm{d} \mathrm{x}}=\mathrm{a} \lambda \cos (\lambda \mathrm{x}+\alpha)\)

    Again differentiating both sides, we get

    \(\Rightarrow \frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}=-\mathrm{a} \lambda^{2} \sin (\lambda x+\mathrm{a})\)

    From equation (i)

    \(\Rightarrow \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=-\lambda^{2} \mathrm{y} \)

    \(\therefore \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+\lambda^{2} \mathrm{y}=0\)

    Hence, the correct option is (A).

  • Question 19
    1 / -0

    The differential form of the equation \((y-b)=a \sin x\):

    Solution

    Given,

    \(y-b=a \sin x\)

    There are two constants a and b so differentiate two times

    Differentiating w.r.t \(\mathrm{x}\)

    \(y^{\prime}=a \cos x\)....(i)

    Again differentiating w.r.t \(x\)

    \(y^{\prime \prime}=-a \sin x\)

    From equation (i), \(a=\frac{y^{\prime}}{\cos x}\)

    \(y^{\prime \prime}=-\frac{y^{\prime}}{\cos x} \times \sin x\)

    \(y^{\prime \prime}+y^{\prime} \tan x=0\)

    Hence, the correct option is (B).

  • Question 20
    1 / -0

    The solution of \(x^{2} \frac{d y}{d x}=x^{2}+x y+y^{2}\) will be:

    Solution

    Given,

    \(\mathrm{x}^{2} \frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{x}^{2}+\mathrm{xy}+\mathrm{y}^{2} \)

    \(\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=1+\frac{\mathrm{y}}{\mathrm{x}}+\left(\frac{y}{x}\right)^{2}\)

    \(\text { Substituting } \mathrm{y}=v \mathrm{x} \text { and } \frac{\mathrm{dy}}{\mathrm{d} x}=\mathrm{v}+\mathrm{x} \frac{\mathrm{dv}}{\mathrm{dx}} \)

    \(\Rightarrow \mathrm{v}+\mathrm{x} \frac{\mathrm{dv}}{\mathrm{d} \mathrm{x}}=1+\mathrm{v}+\mathrm{v}^{2}\)

    \(\Rightarrow \mathrm{x} \frac{\mathrm{dv}}{\mathrm{d} x}=1+\mathrm{v}^{2}\)

    Integrating both sides we get,

    \(\int \frac{\mathrm{d} \mathbf{x}}{\mathbf{x}}=\int \frac{\mathrm{dv}}{1+\mathrm{v}^{2}} \)

    \(\Rightarrow \log \mathrm{x}=\tan ^{-1} \mathrm{v}+\mathrm{c}, \mathrm{c}=\text { constant of integration }\)

    Putting the value of \(\mathrm{v}\) we get,

    \(\therefore \log \mathrm{x}=\tan ^{-1} \frac{y}{x}+c\)

    Hence, the correct option is (A).

  • Question 21
    1 / -0

    Solve the differential equation:

    \(x d y-2 y d x=0\)

    Solution

    Given,

    \(x d y-2 y d x=0\) 

    \(\Rightarrow x d y=2 y d x\)

    On separating variable

    \(\Rightarrow \frac{d y}{y}=2 \frac{d x}{x}\)

    Integrating both sides we get,

    \(\Rightarrow \int \frac{d y}{y}=2 \int \frac{\mathrm{d} x}{x}\)

    \(\Rightarrow \log \mathrm{y}=2 \log \mathrm{x}+\log \mathrm{c}\)

    \(\Rightarrow \log \mathrm{y}=\log \mathrm{x}^{2}+\log \mathrm{c}\)

    \(\Rightarrow \log \mathrm{y}-\log\mathrm{x}^{2}=\log\mathrm{c}\)

    \(\Rightarrow \log \frac{y}{x^{2}}=\log \mathrm{c}\)

    \(\therefore \mathrm{y}=\mathrm{x}^{2} \mathrm{c}\)

    Hence, the correct option is (C).

  • Question 22
    1 / -0

    Solve \(x \frac{d y}{d x}-y=x^{2}\) for \(y(2)\), given \(y(1)=1\):

    Solution

    Given,

    \(\mathrm{x} \frac{\mathrm{d} y}{\mathrm{~d} x}-\mathrm{y}=\mathrm{x}^{2}\)

    \(\Rightarrow \frac{\mathrm{dy}}{\mathrm{d} \mathrm{x}}-\frac{\mathrm{y}}{\mathrm{x}}=\mathrm{x}\)

    It is linear differential equation is of first order.

    \( \operatorname{IF}=e^{\frac{-1}{x}} d x\)

    \(\Rightarrow \operatorname{IF}=e^{-\ln x}\)

    \(\Rightarrow  \operatorname{IF}=\frac{1}{x} \)

    \(\text { Now, } y \times( \operatorname{IF})=\int Q( \operatorname{IF}) d x \)

    \(\Rightarrow y \times \frac{1}{x}=\int x \times \frac{1}{x} d x \)

    \(\Rightarrow \frac{y}{x}=\int d x\)

    Integrating,

    \(\Rightarrow \frac{y}{x}=x+c\) (where \(c\) is integration constant)

    \(y(1)=1\)

    \(\Rightarrow \frac{1}{1}=1+c \)

    \(\Rightarrow c=0 \)

    \( \frac{y}{x}=x \text { OR } y=x^{2}\)

    For \(\mathrm{y}(2)\)

    \(y=2^{2} \)

    \(\Rightarrow y=4\)

    Hence, the correct option is (D).

  • Question 23
    1 / -0

    If \(x d y=y d x+y^{2} d y, y>0\) and \(y(1)=1\), then what is \(y(-3)\) equal to?

    Solution

    Given,

    \(x d y=y d x+y^{2} d y\)

    \(\Rightarrow x d y-y d x=y^{2} d y\)

    \(\Rightarrow \frac{x d y-y d x}{y^{2}}=d y\) \(\quad\quad(\because d\left(\frac{x}{y}\right)=\frac{y d x-x d y}{y^{2}}=\frac{x d y-y d x}{y^{2}}=-d\left(\frac{x}{y}\right))\)

    \(\Rightarrow-d\left(\frac{x}{y}\right)=d(y)\)

    Integrating both side,

    \(\int- d \left(\frac{ x }{ y }\right)= \int d ( y )\)

    \(\Rightarrow-\frac{x}{y}=y+c\)........(i)

    Given that \(y(1)=1\)

    So by putting \(x=1\) and \(y=1\) in equation (i) we get,

    \(\Rightarrow \frac{-1}{1}=1+c\)

    \(\Rightarrow c=-2\)

    \(\Rightarrow-\frac{x}{y}=y-2\)

    \(\Rightarrow y^{2}-2 y+x=0\) (particular solution).......(ii)

    Now the value of \(y(-3)\) put \(x=-3\) in equation (ii) we get,

    \(y^{2}-2 y-3=0\)

    \(\Rightarrow y^{2}-3 y+y-3=0\)

    \(\Rightarrow y(y-3)+1(y-3)=0\)

    \(\Rightarrow(y-3)(y+1)=0\)

    So two values of \(y\) we will get \(y=3, y=-1\)

    But in our question given that \(y>0\) Therefore we will take \(y=3\).

    Hence, the correct option is (A).

  • Question 24
    1 / -0

    The general solution of \(\frac{d y}{d x}+y \tan x=2 \sin x\) is:

    Solution

    Given,

    \(\frac{d y}{d x}+y \tan x=2 \sin x\)...(i)

    By comparing with \(\frac{d y}{d x}+P y=Q\) we get,

    \(P=tan x\) and \(Q=2 sin x\)

    Integrating factor (I.F) of the equation is given by

    \(\text { I. } F=e^{\int P d x}\)

    \(I . F=e^{\int \tan x d x}\)

    \(=e^{\log \sec x}\)

    \(=\sec x\)

    Its solution is:

    \(y \times(I . F)=\int[Q \times(I . F)] d x+C\)

    \(y \sec x=\int[2 \sin x \times \sec x] d x+C \)

    \(y=\int\left[2 \sin x \times \frac{1}{\cos x}\right] d x+C\)

    \(y=\int[2 \tan x] d x+C=2 \log \sec x+C \)

    \(y=\frac{2 \log \sec x+C}{\sec x}\)

    \(y=\frac{\log \sec ^{2} x+C}{\sec x}\)

    Hence, the correct option is (A).

  • Question 25
    1 / -0

    If \(\frac{d y}{d x}=e^{-3 y}, y=0\) when \(x=5\), value of \(x\) for \(y=5\) is:

    Solution

    Given,

    \(\frac{d y}{d x}=e^{-3 y}\)

    \(\Rightarrow\frac{d y}{e^{-3 y}}=d x\)

    \(\Rightarrow e^{3 y} d y=d x\)

    on integrating both side we get,

    \(\int e^{3 y} d y=\int d x\)

    \(\Rightarrow\frac{e^{3 y}}{3}=x+C\).......(i)

    \(\Rightarrow\frac{e^{2 (0)}}{3}=5+C\)  \(\quad\quad(\because{e^{0}} = 1)\)

    \(\Rightarrow C+5= \frac{1}{3}\)

    \(\Rightarrow C= \frac{1}{3}-5\)

    \(\Rightarrow C=\frac{-14}{3}\)

    Substituting \(y=5\) and \(C = \frac{-14}{5}\), we get,

    \(\frac{e^{15}}{3}=x-\frac{14}{3}\)

    \(\Rightarrow x=\frac{e^{15}+14}{3}\)

    Hence, the correct option is (A).

  • Question 26
    1 / -0

    Form the differential equation for the family of circle with center \((0,0)\) and radius \(r\), where \(r\) is any constant:

    Solution

    The family of circle having centre \((0,0)\) and radius \(r\) is:

    \(x^{2}+y^{2}=r^{2}\)

    There is only one constant \(r\).

    Differentiating w.r.t. \(x\) we get,

    \(\frac{d}{dx}(x^{2}+y^{2})=\frac{d}{dx}r^{2}\)

    \(\Rightarrow 2 x+2 y \frac{d y}{d x}=0\)

    \(\Rightarrow \frac{d y}{d x}=-\frac{x}{y}\)

    Hence, the correct option is (C).

  • Question 27
    1 / -0

    The integrating factor of the differential equation \(2 \mathrm{y} \frac{\mathrm{d} \mathrm{x}}{\mathrm{dy}}+\mathrm{x}=5 \mathrm{y}^{2}\) is, \((\mathrm{y} \neq 0)\):

    Solution

    Given,

    \(2 \mathrm{y} \frac{\mathrm{d} \mathrm{x}}{\mathrm{dy}}+\mathrm{x}=5 \mathrm{y}^{2}\)....(i)

    Equation (i) can be simplified as:

    \(\frac{\mathrm{d} x}{\mathrm{~d} y}+\frac{x}{2 y}=\frac{5}{2} y\)

    On comparing eqn \((i)\) with standard eqn,\(\frac{\mathrm{dx}}{\mathrm{dy}}+\mathrm{Px}=\mathrm{Q}\), we get

    \(P=\frac{1}{2 y} \text { and } Q=\frac{5}{2} y \)

    Therefore,

    \(I F=e^{\int P d y}=e^{\int \frac{1}{2 y} d y} \)

    \(\Rightarrow I F=e^{\frac{1}{2} \log y}=e^{\log y^{\frac{1}{2}}}\)

    \(\Rightarrow I F=\sqrt{y}\)\(\quad\quad(\because \mathrm{e}^{a \log x}=x^{a})\)

    Hence, the correct option is (A).

  • Question 28
    1 / -0

    Find the general solution of the differential equation:

    \(\frac{y^{2}}{x^{2}}=\frac{d y}{d x}\)

    Solution

    Given,

    \(\frac{y^{2}}{x^{2}}=\frac{d y}{d x}\)

    Separate the variables,

    \(\frac{ dx }{x^{2}}=\frac{d y}{y^{2}}\)

    on integrating both side we get,

    \(\int \frac{ dx }{ x ^{2}}=\int \frac{d y}{y^{2}}\)\(\quad\quad(\because\int\frac{1}{x^{2}}dx=\frac{-1}{x})\)

    \(\Rightarrow-\frac{1}{x}+C=-\frac{1}{y}\)

    \(\Rightarrow \frac{1}{y}=\frac{1}{x}+C\)

    Hence, the correct option is (A).

  • Question 29
    1 / -0

    Form the differential equation of the following \(y^{2}=a\left(b^{2}-x^{2}\right)\):

    Solution

    Given,

    \(y^{2}=a\left(b^{2}-x^{2}\right)\)

    Differentiating w.r.t \(x\)

    \(\Rightarrow 2 y y^{\prime}=a(-2 x)\)

    \(\Rightarrow y y^{\prime}=-a x\)

    Differentiating w.r.t \(x\) again

    \(\Rightarrow y y^{\prime \prime}+\left(y^{\prime}\right) 2=-a\)

    From (i) and (ii) we get,

    \(\Rightarrow y y^{\prime}=x\left(y y^{\prime \prime}+\left(y^{\prime}\right)^{2}\right) \)

    \(\Rightarrow y y^{\prime}-x y y^{\prime \prime}-x\left(y^{\prime}\right)^{2}=0\)

    Hence, the correct option is (D).

  • Question 30
    1 / -0

    Solve the differential equation \(\sin x \frac{d y}{d x}+\frac{y}{\sin x}=x \sin x e^{\cot x}\):

    Solution

    Given,

    \(\sin x \frac{d y}{d x}+\frac{y}{\sin x}=x \sin x e^{\cot x}\)

    \(\frac{d y}{d x}+\frac{y}{\sin ^{2} x}=x . e^{\cot x}\)

    It is form of \(\frac{d y}{d x}+P y=Q\)

    \(\text { I. } F .=e^{\int p d x}\)

    \(\text { I. } F .=e^{\int \operatorname{cosec}^{2} x d x}\)

    \(=e^{-\cot x}\)

    The solution of the linear equation is given by

    \(y(I . F)=\int Q(I . F \cdot) d x+c\)

    \(\Rightarrow y e^{-\cot x}=\int x e^{\cot x} \cdot e^{-\cot x} d x+c \)

    \(\Rightarrow y e^{-\cot x}=\int x d x+c \)

    \(\Rightarrow y e^{-\cot x}=\frac{x^{2}}{2}+c\) x}\)

    Hence, the correct option is (A).

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now