Given,
\(\left(1-x^{2}\right) \frac{d y}{d x}-x y=1\)....(i)
Dividing both sides in equation (i) by \(1-x^{2}\), we will be able to get it in the standard form.
\(\frac{\mathrm{dy}}{\mathrm{dx}}+\left(\frac{-\mathrm{x}}{1-\mathrm{x}^{2}}\right) \mathrm{y}=\frac{1}{1-\mathrm{x}^{2}} \)
\(\mathrm{P}=\frac{-\mathrm{x}}{1-\mathrm{x}^{2}}\)...(ii)
Let's calculate \(\int P d x\).
\(\int P d x=\int \frac{-x}{1-x^{2}} d x\)
Substituting \(1-x^{2}=t\) in equation (ii), so that \(-2 x d x=d t\), we get:
\(\int P d x=\frac{1}{2} \int \frac{1}{t} d t\)
Using \(\int \frac{1}{x} \mathrm{~d} \mathrm{x}=\log \mathrm{x}+\mathrm{C}\) and ignoring the constant \(\mathrm{C}\), we get:
\(\int \mathrm{P} \mathrm{dx}=\frac{1}{2} \log \mathrm{t}\)...(iii)
By substituting \(1-x^{2}=t\) in equation(iii) we get:
\(\int P d x=\frac{1}{2} \log \left(1-x^{2}\right)\)
\(\Rightarrow \int P d x=\log \sqrt{1-x^{2}}\)
Now, the integrating factor will be:
\(F=e^{\int P d x}\)
\(\Rightarrow F=e^{\log \sqrt{1-x^{2}}}\)
\(\Rightarrow F=\sqrt{1-x^{2}}\), which is the required integrating factor.
Hence, the correct option is (D).