Self Studies

Differential Eq...

TIME LEFT -
  • Question 1
    1 / -0

    For $$x\epsilon R, x\neq 0$$, if $$y(x)$$ is a differentiable function such that $$x\int_{1}^{x}y (t) dt = (x + 1) \int_{1}^{x} t y (t) dt$$, then $$y (x)$$ equals:
    (Where C is a constant)

  • Question 2
    1 / -0

    Let $$y = y(x)$$ be a solution of the differential equation, $$\sqrt{1-x^2}\dfrac{dy}{dx} + \sqrt{1-y^2} = 0, |x| < 1$$.
    If $$y\left(\dfrac{1}{2}\right) = \dfrac{\sqrt{3}}{2}$$, then $$y \left(\dfrac{-1}{\sqrt{2}}\right)$$ is equal to:

  • Question 3
    1 / -0

    The differential equation $$\displaystyle \frac{\mathrm{d}\mathrm{y}}{\mathrm{d}\mathrm{x}}=\frac{\sqrt{1-\mathrm{y}^{2}}}{\mathrm{y}}$$ determines a family of circles with:

  • Question 4
    1 / -0

    Check whether the function is homogenous or not. If yes then find the degree of the function
    $$g(x)=x^2-8x^3$$.

  • Question 5
    1 / -0

    Solution of differential equation $$\displaystyle \frac{dy}{dx} = sin  x  + 2x$$, is

  • Question 6
    1 / -0

    The order of the differential equation
    $$2x^2\dfrac{d^2y}{dx^2} - 3\dfrac{dy}{dx} + y = 0$$ is

  • Question 7
    1 / -0

    The solution of $$\dfrac{dy}{dx}=e^{logx}$$ is:

  • Question 8
    1 / -0

    The solution of $$\dfrac{dy}{dx}=\dfrac{2x}{3y^{2}}$$ is:

  • Question 9
    1 / -0

    The solution of $$\dfrac{dy}{dx}-\dfrac{2xy}{1+x^{2}}=0$$ is

  • Question 10
    1 / -0

    The solution of $$x^{2} \cfrac{dy}{dx}=2$$ is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now