Self Studies

Differential Equations Test - 12

Result Self Studies

Differential Equations Test - 12
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$x^{\frac{b-c}{bc}} . x^{\frac{c-a}{ca}} . x^{\frac{a-b}{ac}}=$$

    Solution
    $$x^{\cfrac{b-c}{bc}}$$$$.x^{\cfrac{c-a}{ac}}$$$$.x^{\cfrac{a-b}{ac}}$$
    $$x^{\cfrac{b-c}{bc}+\cfrac{c-a}{ca}+\cfrac{a-b}{ac}}$$
    $$x^0=1$$
  • Question 2
    1 / -0
    The number of arbitrary constants in the particular solution of a differential equation of third order are:
    Solution

    $$\textbf{Step 1: Find the number of arbitrary constants}$$

                    $$\text{In the particular solution of a differential equation of third order, there is no arbitrary}$$ 

                    $$\text{constant because, in the particular solution of any differential equation,}$$  

                    $$\text{we remove all the arbitrary constants by substituting some particular values.}$$

                    $$\text{Arbitrary constants in the particular solution of a differential equation of third order is0}$$

    $${\textbf{Hence, Option D is the answer}}$$

     

  • Question 3
    1 / -0
    Check whether the function is homogenous or not. If yes then find the degree of the function
    $$g(x)=8x^4$$.
    Solution
    Given function is $$g\left( x \right) =8{ x }^{ 4 }$$
    To check the homogenity of the function we find $$g\left( kx \right) $$ which is,
    $$g\left( kx \right) =8{ k }^{ 4 }{ x }^{ 4 }$$
    $$\cfrac { g\left( kx \right)  }{ g\left( x \right)  } =\cfrac { 8{ k }^{ 4 }{ x }^{ 4 } }{ 8{ x }^{ 4 } } ={ k }^{ 4 }$$ 
    $$\therefore$$ The function is homogenous with $$k>0$$ and is of degree $$4$$.
  • Question 4
    1 / -0
    What is the solution of the differential equation $$\dfrac {dx}{dy} + \dfrac {x}{y} - y^{2} = 0$$?
    where $$c$$ is an arbitrary constant.
    Solution
    $$\dfrac { dx }{ dy } +\dfrac { x }{ y } -{ y }^{ 2 }=0\\ \Rightarrow \dfrac { dx }{ dy } =\dfrac { { y }^{ 3 }-x }{ y } \\ \Rightarrow ydx={ y }^{ 3 }dy-xdy\\ \Rightarrow xdy+ydx={ y }^{ 3 }dy\\ \Rightarrow d(xy)=d\left(\dfrac { { y }^{ 4 } }{ 4 }\right)$$
    Integrating both the sides, we get
    $${ y }^{ 4 }+c=4xy$$
  • Question 5
    1 / -0
    What is the solution of the differential equation $$\dfrac {ydx - xdy}{y^{2}} = 0$$?
    where $$c$$ is an arbitrary constant.
    Solution
    $$\dfrac { ydx-xdy }{ { y }^{ 2 } } =0\\ \Rightarrow ydx=xdy$$ 
    $$\Rightarrow \dfrac { dx }{x } =\dfrac { dy }{ y } $$
    Integrating both the sides, we get
    $$\displaystyle \int \dfrac { dx }{x } =\int \dfrac { dy }{ y } $$
    $$\Rightarrow \ln(cx)=\ln(y)\\ \Rightarrow y=cx$$
    where $$c$$ is an arbitrary constant.
  • Question 6
    1 / -0
    What is the solution of the differential equation $$\sin \left (\dfrac {dy}{dx}\right ) - a = 0$$?
    where $$c$$ is an arbitrary constant.
    Solution
    $$\sin\left( \dfrac { dy }{ dx }  \right) =a$$
    $$ \Rightarrow \dfrac { dy }{ dx } ={\sin }^{ -1 }a$$
    $$\Rightarrow dy={\sin }^{ -1 }a\ dx$$
    Integrating both the sides, we get
    $$\displaystyle \int dy=\int {\sin }^{ -1 }a\ dx$$
    $$\Rightarrow y=x\ {\sin }^{ -1 }a+c$$
    where $$c$$ is a constant.
  • Question 7
    1 / -0
    Check whether the function is homogenous or not. If yes then find the degree of the function
    $$g(x)=4-x^2$$.
    Solution
    Given function is $$g\left( x \right) =4-{ x }^{ 2 }$$
    To check the Homogenity of the function we find $$g\left( kx \right) $$
    $$g\left( kx \right) =4-{ k }^{ 2 }{ x }^{ 2 }$$
    $$\cfrac { g\left( kx \right)  }{ g\left( x \right)  } =\cfrac { 4-{ k }^{ 2 }{ x }^{ 2 } }{ 4-{ x }^{ 2 } } \neq { k }^{ n }$$
    Where $$k>0$$and $$n$$ is an integer.
    $$\therefore$$ The function is not homogenous.
  • Question 8
    1 / -0
    Which of the following is true regarding the function $$f(x, y)= x^4 \sin \dfrac{x}{y}$$ ?
    Solution
    given function is $$f\left( x,y \right) ={ x }^{ 4 }\sin { \cfrac { x }{ y }  } $$
    Now,$$f\left( kx,ky \right) ={ k }^{ 4 }{ x }^{ 4 }\sin { \cfrac { x }{ y }  } $$ ,
    $$\cfrac { f\left( kx,ky \right)  }{ f\left( x,y \right)  } ={ k }^{ 4 }$$
    $$\therefore$$ the function is homogenous with Degree $$4$$.
  • Question 9
    1 / -0
    What is the solution of the differential equation $$\dfrac{dy}{dx} +\dfrac{y}{x} = 0 $$ ?
    Where c is a constant.
    Solution
    Given expression is
    $$\dfrac { dy }{ dx } +\dfrac { y }{ x } =0\\ \Rightarrow \dfrac { dy }{ dx } =-\dfrac { y }{ x } \\ \Rightarrow \dfrac { dy }{ y } +\dfrac { dx }{ x } =0$$
    Integrating we get
    $$\displaystyle  \int { \dfrac { dy }{ y }  } +\int { \frac { dx }{ x }  } =0\\ \Rightarrow \ln { y } +\ln { x=c } \\ \Rightarrow xy=c$$
  • Question 10
    1 / -0
    Find the value of $$k$$ for the function: $$2x^2y+3xyz+z^k$$ to be homogenous.
    Solution
    Let the given function be $$f\left( x,y,z \right) =2{ x }^{ 2 }y+3xyz+{ z }^{ k }$$
    Given that the function is homogenous,
    $$\Longrightarrow \cfrac { f\left( \alpha x,\alpha y,\alpha z \right)  }{ f\left( x,y,z \right)  } =\cfrac { 2{ x }^{ 2 }y\alpha ^{ 3 }+3xyz{ \alpha  }^{ 3 }+{ z }^{ k }{ \alpha  }^{ k } }{ 2{ x }^{ 2 }y+3xyz+{ z }^{ k } } ={ \alpha  }^{ n }$$ 
    where $$\alpha $$ is the degree of he function and $$n$$ is a positive integer.
    $$\therefore$$ by comparing the terms in the numerator we get $$k=3$$ 
    so that we can take common in the numerator such that it cancels with the denominator.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now