Self Studies

Differential Equations Test - 13

Result Self Studies

Differential Equations Test - 13
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\dfrac{dy}{dx}=x^{-3}$$ then $$y$$
    Solution
    $$\displaystyle{\frac { dy }{ dx } ={ x }^{ -3 }\\ dy={ x }^{ -3 }dx\\ \int { dy } =\int { { x }^{ -3 }dx } \\ y=\frac { { x }^{ -2 } }{ -2 } +c\\ y=-\frac { 1 }{ 2{ x }^{ 2 } } +c}$$
  • Question 2
    1 / -0
    The number of arbitrary constants in the particular solution of the differential equation of order $$3$$ is ______.
    Solution
    The number of arbitary constants in the particular solution of the differential equation of order $$3$$ is $$0$$
  • Question 3
    1 / -0
    The number of arbitrary constant in the general solution of differential equation of order $$3$$ is _________.
    Solution
    As per the note given the number of arbitrary constants in third order differential equation are $$3$$(Three).
  • Question 4
    1 / -0
    What is the general solution of the differential equation $$x\, dy - y\, dx \,y^2$$ ?
    Solution
    $$xdy-{ y }^{ 3 }dx=0\\ rearranging\quad \\ \cfrac { dx }{ x } =\cfrac { dy }{ { y }^{ 3 } } \\ integrating\quad both\quad sides\\ \ln { x } =\frac{{ y }^{ -2 }}{-2}+c\\ $$

  • Question 5
    1 / -0
    The solution of the differential equation $$x^4\dfrac{dy}{dx}+x^3y+cosec(xy)=0$$ is equal to 
    Solution
    Given,
                  $$x^4\dfrac{dy}{dx}+x^3y+cosec(xy)=0$$

             Put $$xy=t$$
                    $$y+x\dfrac{dy}{dx}=\dfrac{dt}{dx}$$

    Substituting it we get;
                             $$x^3\left(\dfrac{dt}{dx}-\dfrac{t}{x}\right)+x^2t+cosec(t)=0$$

                            $$\Rightarrow x^3\dfrac{dt}{dx}+cosec(t)=0$$

                            $$\Rightarrow \sin(t)dt+x^{-3}dx=0$$ 

    After Integrating we get;

                             $$2\cos(xy)+x^{-2}=C$$
  • Question 6
    1 / -0
    The differential equation $$y\cfrac { dy }{ dx } +x=a$$ where '$$a$$' is any constant represents:
    Solution
    $$y\frac { dy }{ dx } +x=a$$
    $$\Rightarrow ydy+xdx=adx$$ 
    Integrating both sides, 
    $$\Rightarrow \dfrac { { y }^{ 2 } }{ 2 } +\dfrac { { x }^{ 2 } }{ 2 } =ax+c\\ \Rightarrow { x }^{ 2 }+{ y }^{ 2 }-2ax-2c=0\\ \Rightarrow { (x-a) }^{ 2 }+{ y }^{ 2 }={ a }^{ 2 }+2c$$ 
    Clearly, this equation represents circle with centre $$(a,0)$$ and radius $$\sqrt { { a }^{ 2 }+2c }. $$
    Option C is correct.
  • Question 7
    1 / -0
    The differential equation of $$y=c{ x }^{ 3 },c$$ is a arbitrary constant is _______
    Solution
    $$y=cx^{3}$$
    Differentiating both sides
    $$\dfrac{dy}{dx}=\dfrac{d}{dx}(cx^{3})$$
    $$\dfrac{dy}{dx}=c\dfrac{d}{dx}(x^{3})$$
    $$\dfrac{dy}{dx}=3cx^{2}$$
    Multiplying x on both sides
    $$x\dfrac{dy}{dx}=x\times 3cx^{2}$$
    $$x\dfrac{dy}{dx}=3cx^{3}$$
    Substituting $$y=cx^{3}$$
    $$x\dfrac{dy}{dx}=3y$$
  • Question 8
    1 / -0
    The solution of $$\dfrac{ydx-xdy}{y^{2}}=0$$ represents a family of
    Solution
         $$\dfrac{{ydx - xdy}}{{{y^2}}} = 0$$
      $$ \Rightarrow d\left( {\dfrac{x}{y}} \right) = 0$$
     integrating both sides 
      $$ \Rightarrow \dfrac{x}{y} = c$$
     $$\Rightarrow x = cy$$
      This is a straight passing through origin
  • Question 9
    1 / -0
    The $$D.E$$ $$y\dfrac { dy }{ dx } +x=a$$ represents
    Solution
    $$y\frac{{dy}}{{dx}} + x = a$$
    $$\Rightarrow ydy + xdx = adx$$
          Integrating both sides 
    $$\Rightarrow \dfrac{{{y^2}}}{2} + \dfrac{{{x^2}}}{2} = ax + c$$
    $$\Rightarrow {x^2} + {y^2} = 2ax + c$$
    $$ \Rightarrow {x^2} + {y^2} - 2ax + c = 0$$
          on comparing it with 
    $${x^2} + {y^2} + 2gx +  + 2fy + c = 0$$
       here , $$g =  - a,f = 0$$
       centre =$$\left( { - g, - f} \right) = \left( {a,0} \right)$$
      therefore , it represent a circle with centre at X- axis  
  • Question 10
    1 / -0
    The solution of $$\left( { x }^{ 2 }{ y }^{ 3 }+{ x }^{ 2 } \right) dx+\left( { y }^{ 2 }{ x }^{ 3 }+{ y }^{ 2 } \right) dy=0$$ is
    Solution
    $$\left( {{x^2}{y^3} + {x^2}} \right)dx + \left( {{y^2}{x^3} + {y^2}} \right)dy = 0$$
    $$ \Rightarrow {x^2}\left( {1 + {y^3}} \right)dx + {y^2}\left( {1 + {x^3}} \right)dy = 0$$
    $$\Rightarrow {y^2}\left( {1 + {x^3}} \right)dy =  - {x^2}\left( {1 + {y^3}} \right)dx$$
    $$ \Rightarrow \dfrac{1}{3}\int {\dfrac{{3{y^2}}}{{{y^3} + 1}}} dy = \dfrac{1}{3}\int { - \dfrac{{3{x^2}}}{{{x^3} + 1}}} dx$$
    $$ \Rightarrow \dfrac{1}{3}\log \left( {{y^3} + 1} \right) =  - \dfrac{1}{3}\log \left( {{x^3} + 1} \right) + \log c$$
    $$ \Rightarrow \log \left( {{y^3} + 1} \right) + \log \left( {{x^3} + 1} \right) = \log c$$
    $$ \Rightarrow \left( {{x^3} + 1} \right)\left( {{y^3} + 1} \right) = c$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now