Self Studies

Differential Equations Test - 14

Result Self Studies

Differential Equations Test - 14
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$y = \sin kt$$ satisfies the differential equation $$y'' + 9y = 0$$. Then $$k=$$
    Solution
    Given, $$y = \sin kt$$ satisfies the differential equation $$y'' + 9y = 0$$.
    Then, we have,
    $$-k^2\sin kt+9\sin kt=0$$
    or, $$k^2-9=0$$ [ Since $$\sin kt\ne 0$$]
    or, $$k=\pm 3$$.
  • Question 2
    1 / -0
    The solution of the differential equation $$\dfrac{dy}{dx} = \dfrac{3y - 7x - 3}{3x - 7y + 7}$$ is 
    Solution
    $$\dfrac{dy}{dx}=\dfrac{3y-7x-3}{3x-7y+7}$$ put $$y=Y+1$$ and $$x=X$$

    $$\dfrac{dy}{dx}=\dfrac{dY}{dX}$$

    $$\dfrac{dY}{dX}=\dfrac{3Y-7X}{3X-7Y}$$ put $$Y=vX$$ $$\Rightarrow \dfrac{dY}{dX}=v+X\dfrac{dv}{dX}$$
    $$\Rightarrow V+X\dfrac{dv}{dX}=\dfrac{3v-7}{3-7v}\Rightarrow \dfrac{3v-7v^2-3v+7}{(3-7v)}=-X\dfrac{dv}{dX}$$
    $$X\dfrac{dv}{dX}=\dfrac{7(v+1)(v-1)}{(3-7v)}$$ $$\Rightarrow \boxed{\frac{dv(3-7v)}{(v+1)(v-1)}=7\frac{dx}{X}}$$
    $$\dfrac{3-7v}{(v+1)(v-1)}=\dfrac{7-4-7v}{(v+1)(v-1)}=\dfrac{7(1-v)}{(v+1)(v-1)}-\dfrac{4}{(v+1)(v-1)}$$
    $$=\dfrac{-7}{(v+1)}-\dfrac{4}{(v+1)(v-1)}$$
    $$\Rightarrow \dfrac{3-7v}{(v+1)(v-1)}=\dfrac{-7}{(v+1)}-\dfrac{4}{(v+1)(v-1)}=\dfrac{-7}{(v+1}-\dfrac{4}{2}\left[\dfrac{1}{(v-1)}-\dfrac{1}{(v+1)}\right]=\dfrac{-7+2}{(v+1)}\left[\dfrac{1}{(v+1)}-\dfrac{1}{(v-1)}\right]$$
    $$\boxed{\dfrac{3-7v}{(v+1)(v-1)}=\left[\dfrac{-5}{(v+1)}-\dfrac{2}{(v-1)}\right]}$$
    $$\Rightarrow dv\left[\dfrac{-5}{(v+1)}-\dfrac{2}{(v-1)}\right]$$ $$7\dfrac{dx}{x}$$
    $$\Rightarrow |(v+1)^5(v-1)^2|=7|n||x|$$
    $$\Rightarrow X^7(v+1)^5(v-1)^2 = c$$
    $$\Rightarrow x^7\dfrac{(Y+x)^5(Y-x)^2}{x^7}=c$$
    $$\Rightarrow (y+x)^5(y-x)^2=c$$
    $$\Rightarrow (y-1+x)^5(y-1-x)^2=c$$
    $$\Rightarrow \boxed{(y+x-1)^5(y-x-1)^2=c}$$
  • Question 3
    1 / -0
    The differential equation for all the straight lines which are at a unit distance from the origin is  
    Solution
    Let the line be : $$y=mx+c$$

    $$\Rightarrow 1=\dfrac {|c|} {\sqrt {m^{2}+1}}$$

    $$\Rightarrow y=mx\pm \sqrt {m^{2}+1}$$

    $$\Rightarrow \dfrac {dy} {dx} =m$$

    $$\Rightarrow y=x\dfrac {dy} {dx} \pm \sqrt {\left (\dfrac {dy} {dx} \right) ^{2}+1} $$

    $$\Rightarrow \left (y-x\dfrac {dy} {dx} \right) ^{2}=1+\left (\dfrac {dy} {dx} \right) ^{2}$$
  • Question 4
    1 / -0
    Which of the following differential equation is linear ?
    Solution
    Only in the equation $$(1+x)\dfrac{dy}{dx}-xy=1$$ , both the terms $$\dfrac{dy}{dx}$$ and $$y$$ are linear. Hence this equation is a linear differential equation.
  • Question 5
    1 / -0
    Solution of the different equation, $$ydx - xdy + x{y^2}dx = 0$$ can be.
    Solution
    $$\cfrac{ydx-xdy}{y^2} = d(\cfrac{x}{y})$$
    Hence, 
    $$\cfrac{ydx-xdy}{y^2} + xdx = 0$$
    $$d(\cfrac{x}{y}) + xdx = 0$$
    Integrating both sides we get,
    $$\cfrac{x}{y} + \cfrac{x^2}{2} = C$$
    $$2x+x^2 y  = \lambda y$$
  • Question 6
    1 / -0
    The solution of the differential equaton $$3{e^x}\tan ydx + \left( {1 - {e^x}} \right){\sec ^2}ydy = 0$$ is 
    Solution
    $$3{e}^{x}\tan y dx+(1-{e}^{x})\sec ^{ 2 }{ y } dy=0$$
    $$\cfrac { 3{ e }^{ x } }{ 1-{ e }^{ x } } dx+\cfrac { \sec ^{ 2 }{ y } dy\quad  }{ \tan { y }  } =0$$
    Integrating both sides
    $$-3\log{1-{ e }^{ x }}+\log{\tan y)}=\log{e}$$
    $$\log{(\tan y)}=\log C+3\log{(1-{ e }^{ x })}$$
    $$\log{(\tan y)}=\log { \left( C{ \left( 1-{ e }^{ x } \right)  }^{ 3 } \right)  } $$
    $$\tan y=C{(1-{e}^{x})}^{3}$$
  • Question 7
    1 / -0
    Solve $$(1+\cos x)dy=(1-\cos x)dx$$.
    Solution
    $$dy = \cfrac{1-\cos x}{1+\cos x} dx$$
    Integrating both sides,we get
    $$y = \displaystyle \int -\cfrac{\cos x+1-2}{\cos x+1}dx$$
    $$y = \displaystyle \int -dx+ \int 2\cfrac{1}{\cos x+1}dx$$
    $$y = \displaystyle -x+\int \cfrac{\sec^2 \cfrac{x}{2}}{2} dx$$
    $$y = \displaystyle \tan \cfrac{x}{2} - x +C$$
  • Question 8
    1 / -0
    If $$\dfrac{dy}{dx}+y\tan x=\sin 2x$$ and $$y(0)=1$$, then $$y(\pi)=?$$
    Solution
    $$I.F. = e^{\int tanxdx}$$
    $$\implies I.F. = e^{-lncosx}$$
    $$I.F. = \cfrac{1}{cosx}$$
    Multiplying with $$I.F.$$ in the given equation,we get-
    $$\cfrac{dy}{cosx dx} + \cfrac{ysinx}{cos^2x} = 2sinx$$
    $$d(\cfrac{y}{cosx}) = 2sinxdx$$
    Integrating both sides, we get- 
    $$\cfrac{y}{cosx} = -2cosx + C$$
    $$y(0) = 1$$
    $$1 = -2+C$$
    $$C = 3$$
    For $$x=\pi$$ we get
    $$\cfrac{y}{-1} = 2+3$$
    $$y = -5$$ 
  • Question 9
    1 / -0
    Solve:
    $$ \dfrac {dy}{dx} = y \cot x$$
    Solution
    $$\dfrac{dy}{dx}=y \cot x$$
    $$\Rightarrow \dfrac{dy}{y}= \cot x dx$$
    $$\Rightarrow \dfrac{dy}{y} = \dfrac{\cos x}{\sin x} dx$$
    $$\Rightarrow ln |y|+ln |c|= ln |\sin x|$$
    $$\Rightarrow ln |Cy| = ln |\sin \, x|$$
    $$\Rightarrow cy= \sin x$$
    $$\Rightarrow y= k \sin x$$ where k= constant
  • Question 10
    1 / -0
    The D.E. obtained from $$(y - a)^2 = 4 (x - b)$$ is given by
    Solution
    $$(y-a^2)=4(x-b)$$
    $$y^2+a^2-2ay=4x-4b$$
    Differentiating w.r.t to x, we get
    $$2yy_1-2ay_1=4$$
    $$yy_1-ay_1=2$$
    $$yy_1-2=ay_1$$
    $$y-\dfrac{2}{y_1}=a$$
    Differentiating both sides wrt $$x_1$$ we get
    $$y_1=\dfrac{2}{y_1^2}y_2=0$$
    $$y^3_1+2y_2=0$$
    $$\therefore y^3_1+2y_2=0$$
    where $$y_1=\dfrac{dy}{dx}$$ & $$y_2=\dfrac{d^2y}{dx^2}$$.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now