$$\dfrac{dy}{dx}=\dfrac{dY}{dX}$$
$$\dfrac{dY}{dX}=\dfrac{3Y-7X}{3X-7Y}$$ put $$Y=vX$$ $$\Rightarrow \dfrac{dY}{dX}=v+X\dfrac{dv}{dX}$$
$$\Rightarrow V+X\dfrac{dv}{dX}=\dfrac{3v-7}{3-7v}\Rightarrow \dfrac{3v-7v^2-3v+7}{(3-7v)}=-X\dfrac{dv}{dX}$$
$$X\dfrac{dv}{dX}=\dfrac{7(v+1)(v-1)}{(3-7v)}$$ $$\Rightarrow \boxed{\frac{dv(3-7v)}{(v+1)(v-1)}=7\frac{dx}{X}}$$
$$\dfrac{3-7v}{(v+1)(v-1)}=\dfrac{7-4-7v}{(v+1)(v-1)}=\dfrac{7(1-v)}{(v+1)(v-1)}-\dfrac{4}{(v+1)(v-1)}$$
$$=\dfrac{-7}{(v+1)}-\dfrac{4}{(v+1)(v-1)}$$
$$\Rightarrow \dfrac{3-7v}{(v+1)(v-1)}=\dfrac{-7}{(v+1)}-\dfrac{4}{(v+1)(v-1)}=\dfrac{-7}{(v+1}-\dfrac{4}{2}\left[\dfrac{1}{(v-1)}-\dfrac{1}{(v+1)}\right]=\dfrac{-7+2}{(v+1)}\left[\dfrac{1}{(v+1)}-\dfrac{1}{(v-1)}\right]$$
$$\boxed{\dfrac{3-7v}{(v+1)(v-1)}=\left[\dfrac{-5}{(v+1)}-\dfrac{2}{(v-1)}\right]}$$
$$\Rightarrow dv\left[\dfrac{-5}{(v+1)}-\dfrac{2}{(v-1)}\right]$$ $$7\dfrac{dx}{x}$$
$$\Rightarrow |(v+1)^5(v-1)^2|=7|n||x|$$
$$\Rightarrow X^7(v+1)^5(v-1)^2 = c$$
$$\Rightarrow x^7\dfrac{(Y+x)^5(Y-x)^2}{x^7}=c$$
$$\Rightarrow (y+x)^5(y-x)^2=c$$
$$\Rightarrow (y-1+x)^5(y-1-x)^2=c$$
$$\Rightarrow \boxed{(y+x-1)^5(y-x-1)^2=c}$$