Self Studies

Differential Equations Test - 15

Result Self Studies

Differential Equations Test - 15
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The differential equation $$\dfrac{dy}{dx} = 2$$ represents
    Solution
    $$\dfrac{dy}{dy}=2$$
    $$\Rightarrow dy=2dx$$
    Integrating on both sides
    $$\int dy=\int 2dx$$
    $$\Rightarrow y= 2x+c$$
    straight line of slope $$2$$.

  • Question 2
    1 / -0
    The solution of the differential equation  $$\left( 1+y^{ { 2 } } \right) +\left( x-e^{ { { \tan   }^{ -1 }y } } \right) \dfrac { dy }{ dx } =0,$$  is
    Solution
    $$\begin{array}{l} \left( { 1+{ y^{ 2 } } } \right) \frac { { dx } }{ { dy } } ={ e^{ { { \tan   }^{ -1y } } } }-x \\ \frac { { dx } }{ { dy } } +\frac{x}{\left( { 1+{ y^{ 2 } } } \right)} =\frac { { { e^{ { { \tan   }^{ -1y } } } } } }{ { \left( { 1+{ y^{ 2 } } } \right)  } }  \end{array}$$
    Its a linear differential equation with $$I.F. = {e^{{{\tan }^{ - 1}}y}}$$
    So,
    We would be $$x.{e^{{{\tan }^{ - 1}}y}}$$=integral of $$\frac{{{e^{{{\tan }^{ - 1}}y}}.{e^{{{\tan }^{ - 1}}y}}}}{{\left( {1 + {y^2}} \right)}}$$
    Put $${\tan ^{ - 1y}} = t$$
  • Question 3
    1 / -0
    The solution of $$\dfrac{dy}{dx}=\dfrac{x+x^{2}}{y-y^{2}}$$ is:
    Solution
    $$\dfrac{dy}{dx}=\dfrac{x+x^{2}}{y-y^{2}}$$
    $$\int (y-y^{2})dy=\int (x+x^{2})dx+c$$
    $$\dfrac{y^{2}}{2}-\dfrac{y^{3}}{3}=\dfrac{x^{2}}{2}+\dfrac{x^{3}}{3}+c$$
    $$\Rightarrow 3(y^{2}-x^{2})=2(x^{3}+y^{3})+c$$
  • Question 4
    1 / -0
    The solution of $$\dfrac{d^{2}y}{dx^{2}}=0$$ represents
    Solution
    $$\dfrac{d}{dx}y_{1}=0$$
    $$\Rightarrow \int dy_{1}=\int 0.dx+c_{1}$$
    $$\Rightarrow \int dy_{1}=c_{1}$$
    $$\Rightarrow y_{1}=c_{1}$$
    $$\dfrac{dy}{dx}=c_{1}$$
    $$\int dy=\int c_{1}\ dx+c_{2}$$
    $$\Rightarrow y=c_{1}x+c_{2}\ straight\ line$$
  • Question 5
    1 / -0
    The solution of $$\dfrac{dy}{dx}= \tan\  y$$ is
    Solution
    $$\dfrac{dy}{dx}=\tan y$$
    $$\int \cot\ y\ dy=\int dx+c$$
    $$\log\ \sin y=x+c$$
  • Question 6
    1 / -0
    The differential equation $$y\dfrac{dy}{dx}+x=A$$ where A is a constant represents a set of:
    Solution
    $$y\ \dfrac{dy}{dx}= A-x$$
    $$\Rightarrow y\ dy= (A-x)dx$$
    $$\Rightarrow \dfrac{y^{2}}{2}= Ax-\dfrac{x^{2}}{2}+c$$
    $$\dfrac{y^{2}}{2}= \dfrac{2Ax-x^{2}+c}{2}$$
    $$y^{2}= -(x^{2}-2Ax+A^{2})+A^{2}+c$$
    $$\Rightarrow (x-A)^{2}+y^{2}= A^{2}+c$$
    $$\Rightarrow $$ center of circle = (A,0)
  • Question 7
    1 / -0
    The solution of $$\displaystyle \frac{dy}{dx}+y \tan x = 0$$ is:
    Solution
    $$\dfrac{dy}{dx}+y\ \tan\ x=0$$
    $$\int \dfrac{dy}{y}=-\int \tan\ x\ dx+c$$
    $$\log\ y=\log\ c\ \cos\ x$$
    $$\Rightarrow y=c\ \cos\ x$$
  • Question 8
    1 / -0
    The solution of $$\frac{dy}{dx}=e^{x-y}$$ is:
    Solution
    $$\dfrac{dy}{dx}=\dfrac{e^{x}}{e^{y}}$$
    $$\Rightarrow \int e^{y}dy=\int e^{x}dx+c_{1}$$
    $$e^{y}=e^{x}+c_{1}$$
    $$e^{y}-e^{x}=c_{1}$$
    $$e^{y}=e^{x}+c_{1}$$
    $$c=e^{x}-e^{y}$$
  • Question 9
    1 / -0
    The differential equation of the family of circles whose center lies on $$x-$$axis and passing through origin is
    Solution
    General equation of a circle can be given as
    $$x^2+y^2+2gx+2fy+c=0$$
    Since it is given that this circle passes through origin and centre lies on $$x-$$axis
    $$\therefore$$ Center of circle is $$(-g,0)$$

    So, the equation of a circle passing through origin and centre on $$x-$$axis is 
    $$x^2+y^2+2gx=0$$     ....(1)
    $$\Rightarrow g = -\dfrac{x^2+y^2}{2x}$$

    Differentiating (1) w.r.t $$x$$ 
    $$2x+2y\dfrac{dy}{dx}+2g=0$$    ....(2)
    Substituting $$g$$ in (2), we get
    $$\Rightarrow \displaystyle 2x+2y\frac{dy}{dx}-\frac{x^2+y^2}{x}=0$$

    $$\Rightarrow \displaystyle 2x+2y\frac{dy}{dx}=\frac{x^2+y^2}{x}$$

    $$\Rightarrow \displaystyle 2x^2+2xy\frac{dy}{dx}=x^2+y^2$$
    Re-arranging  this, we get
    $$\Rightarrow (y^{2}-x^2)dx-2xydy=0$$
    which is the required differential equation.

    Hence, option B.
  • Question 10
    1 / -0
    The solution of $$\displaystyle \frac{dy}{dx}+\displaystyle \frac{\sqrt{1+y^{2}}}{\sqrt{1+x^{2}}}=0$$ is:
    Solution
    $$\dfrac{dy}{\sqrt{1+y^{2}}}= -\dfrac{dx}{\sqrt{1+x^{2}}}$$
    Let $$y= \tan\theta$$
    $$dy= \sec^{2}\theta \ d\ \theta$$
    $$\Rightarrow \int \dfrac{dy}{\sqrt{1+y^{2}}}= \dfrac{\sec^{2}\theta\ d\ \theta }{sec\theta }$$ 
    $$\Rightarrow  \int \sec\theta\ d\ \theta = \log| \sec\theta +\tan\theta |$$
    $$\Rightarrow \log |\sqrt{1+y^{2}}+y|= -\log |(\sqrt{1+x^{2}}+x)|+\log \ c$$
    $$\Rightarrow (y+\sqrt{1+y^{2}})(x+\sqrt{1+x^{2}})= c$$, which can also be written as
    $$\displaystyle \sinh^{-1}x +\sinh^{-1}y=c$$
    Hence, option 'C' is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now