Self Studies

Differential Equations Test - 24

Result Self Studies

Differential Equations Test - 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Solution of $$\displaystyle \frac{dy}{dx}+\frac{y^{2}+y+1}{x^{2}+x+1}=0$$ is:
    Solution
    $$\Rightarrow  \dfrac{-dy}{(y+\dfrac{1}{2})^{2}+(\dfrac{\sqrt{3}}{2})^{2}} = \dfrac{dx}{(x+\dfrac{1}{2})^{2}+ (\dfrac{\sqrt{3}}{2})^{2}}$$

    $$\Rightarrow  -tan^{-1} \left(\dfrac{y+\dfrac{1}{2}}{\dfrac{\sqrt{3}}{2}}\right) =  tan^{-1} \left (\dfrac{x+\dfrac{1}{2}}{\dfrac{\sqrt{3}}{2}}\right) + c$$

    $$\Rightarrow   c= tan^{-1} \left(\dfrac{(2x+1)}{\sqrt{3}}\right) + tan^{-1} \left(\dfrac{2y+1}{\sqrt{3}}\right)$$
  • Question 2
    1 / -0
    The order of differential equation $$\displaystyle \frac{d^{2}y}{dx^{2}}-\left ( \frac{dy}{dx} \right )^{2}=1$$ is:
    Solution
    The order of differential equation is the order of the highest derivative in the equation 
    $$\therefore $$ the above given equation is of second order
  • Question 3
    1 / -0
    A Function $$y=f(x)$$ stasfies $$\displaystyle  {f}''(x)=-\displaystyle \frac {1}{x^2}-\pi^2\sin(\pi x)$$; $$\displaystyle  {f}'(2)=\pi+ \displaystyle \frac{1}{2}$$ and $$f(1)=0$$. The value of $$f\left (\displaystyle  \frac{1}{2} \right )$$ is:
    Solution
    $$\displaystyle  {f}''(x)=-\displaystyle \dfrac {1}{x^2}-\pi^2\sin(\pi x)$$
    Integrating w.r.t x on both sides,
    $$f'(x)=\displaystyle \dfrac { 1 }{ x } +\pi ^{ 2 }\dfrac { \cos { \pi x }  }{ \pi  } +C$$
    $$\Rightarrow f'(x)=\dfrac { 1 }{ x } +\pi \cos { \pi x } +C$$
    $$\displaystyle f'(2)=\dfrac { 1 }{ 2 } +\pi +C$$
    $$\displaystyle \pi +\dfrac { 1 }{ 2 } =\dfrac { 1 }{ 2 } +\pi +C$$
    $$\Rightarrow C=0$$
    Hence, $$f'(x)=\dfrac { 1 }{ x } +\pi \cos { \pi x } $$
    Again , integrating w.r.t. x
    $$\Rightarrow f(x)=ln|x|+\sin {\pi x}+C_{1}$$
    Put $$x=1$$
    $$0=0+0+C_{1}$$
    $$\Rightarrow C_{1}=0$$
    Hence, $$f(x)=\ln { | } x|+\sin { \pi x } $$
    $$f(\dfrac{1}{2})=\ln |\dfrac{1}{2}|+1$$
    $$\Rightarrow f(\dfrac{1}{2})=-\ln 2 +1$$
    Hence, option 'D' is correct.
  • Question 4
    1 / -0
    If $$f(x) = x+2;  g(x) = x^{2}-x-2$$, then $$\dfrac{g(1)+g(2)+g(3)}{f(-4)+f(-2)+f(2)}=$$
    Solution

  • Question 5
    1 / -0
    f:R r be defined by $$f(x)=3x-5,$$ the formula that defines the reverse $$f^n f^{-1}$$ is
    Solution

  • Question 6
    1 / -0
    If $$\displaystyle f\left ( 0 \right )={f}'\left ( 0 \right ) = 0$$ and $$\displaystyle {f}''\left ( x \right )=\tan ^{2}x$$ then $$\displaystyle f\left ( x \right )$$ is:
    Solution
    $$\displaystyle {f}''\left ( x \right )=\tan ^{2}x$$
    $$\displaystyle f''(x)=(\sec^{2} x -1)$$
    Integrating w.r.t x
    $$f'(x)=\tan x - x+C$$   .....(1)
    $$f'(0)=C$$
    Integrating (1) w.r.t. x, we get
    $$f(x)=\log |\sec x|-\frac{x^2}{2}+Cx+C_{1}$$
    $$f(0)=C_{1}$$
    Now since $$ f'(0) = f(0) = 0$$ we get $$ C_1 = C = 0$$
  • Question 7
    1 / -0
    The differential equation $$\displaystyle \frac{dy}{dx}=\frac{\sqrt{1-y^{2}}}{y}$$determines a family of circles with:
    Solution
    $$\cfrac { dy }{ dx } =\cfrac { \sqrt { 1-y^{ 2 } }  }{ y } \\ \Rightarrow \cfrac { dy }{ dx } \cfrac { y }{ \sqrt { 1-y^{ 2 } }  } =1\\ \Rightarrow \int { \cfrac { y }{ \sqrt { 1-y^{ 2 } }  } dy } =\int { dx } \\ \Rightarrow -\sqrt { 1-y^{ 2 } } =x+c\Rightarrow -y^{ 2 }+1=\left( x+c \right) ^{ 2 }\\ \Rightarrow \left( x+c \right) ^{ 2 }+y^{ 2 }=1$$
  • Question 8
    1 / -0
    If $$\frac{{dy}}{{dx}} = {e^{ - 2y}}$$ and $$y = 0$$ when $$x = 5$$, then value of x for $$y = 3$$ is
    Solution
    $$\frac {dy}{dx}=e^{-2y}$$
    $$\int e^{2y}dy=\int dx$$
    $$\frac {e^{2y}}{2}=x+c$$
    $$\frac {2}{2}=5+c$$
    $$c=\frac {-9}{2}$$
    $$x=\frac {e^6+9}{2}$$
  • Question 9
    1 / -0
    The general solution of differential equation is $$y=ae^{bx+c}$$ where $$a, b, c$$ are arbitrary constant. The order of differential equation is:
    Solution
    $$\displaystyle=ae^{bx}.e^{c}$$ $$a,b,c$$ are three constants 
    in order to solve the above given equation we have to differentiate it twice so the given equation is 
    $$\dfrac{\mathrm{d}^{2} y}{\mathrm{d} x^{2}}=ab^{2}e^{bx+c} $$ 
    => Thus, order is $$2$$
    Hence, option 'B' is correct.
  • Question 10
    1 / -0
    Find the solution of $$\displaystyle \frac{dy}{dx}=e^{x-y}+x^{2}e^{-y}$$.
    Solution
    Given  $$\displaystyle \frac{dy}{dx}=e^{x-y}+x^{2}e^{-y}$$
    $$\Rightarrow \dfrac {dy}{dx}=\dfrac {e^x}{e^y}+\dfrac {x^2}{e^y}$$
    $$\Rightarrow \displaystyle e^{y}dy=\left ( e^{x}+x^{2} \right )dx.$$
    Now integrating both sides.
    $$\displaystyle e^{y}=e^{x}+\frac{x^{3}}{3}+c.$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now