Self Studies

Differential Equations Test - 25

Result Self Studies

Differential Equations Test - 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the solution of $$\displaystyle \left ( e^{y}+1 \right )\cos x dx+e^{y}\sin x dy=0$$
    Solution
    Given  $$\displaystyle \left ( e^{y}+1 \right )\cos x dx+e^{y}\sin x dy=0$$

    $$\displaystyle \therefore \frac{\cos x}{\sin x}dx+\frac{e^{y}}{e^{y}+1}dy=0.$$ 

    Integrating we get, 

    $$\displaystyle \int\frac{\cos x}{\sin x}dx+\int\frac{e^{y}}{e^{y}+1}dy=0.$$ 

    or  $$\displaystyle \log \sin x+\log \left ( e^{y}+1 \right )=\log c$$

    or  $$\displaystyle \sin x\left ( e^{y}+1 \right )=c.$$
  • Question 2
    1 / -0

    Directions For Questions

    The differential equation corresponding to $$y=c_{1}e^{m_{1}x}+c_{2}e^{m_{2}x}+c_{3}e^{m_{3}x}$$ where $$c_{1}$$, $$c_{2}$$, $$c_{3}$$ are arbitrary constants & $$m_{1}$$, $$m_{2}$$, $$m_{3}$$ are roots of the equation $$m^{3}-9m^{2}+23m-15=0$$ is
    $$\displaystyle A\frac{d^{3}y}{dx^{3}}+B\frac{d^{2}y}{dx^{2}}+C\frac{dy}{dx}+D=0$$ where A, B, C, D are constants
    On the basis of above information answer the following questions.

    ...view full instructions

    The order of the differential equation is
    Solution
    As $$m_{1}$$, $$m_{2}$$, $$m_{3}$$ are roots of $$m^{3}-9m^{2}+23m-15=0$$
    $$\Rightarrow $$   $$\left ( m-1 \right )\left ( m-3 \right )\left ( m-5 \right )=0$$
    $$\Rightarrow $$   $$m_{1}=1$$, $$m_{2}=3$$, $$m_{3}=5$$
    $$\therefore $$   Required solution is $$y=c_{1}e^{x}+c_{2}e^{3x}+c_{3}e^{5x}$$          (i)
    On Differentiating w.r to x both sides we get
    $$\Rightarrow $$   $${y}'=c_{1}e^{x}+3c_{2}e^{3x}+5c_{3}e^{5x}$$          (ii)
    (using (ii) -(i))
    $$\Rightarrow $$   $${y}'-y=2c_{2}e^{3x}+4c_{3}e^{5x}$$          (iii)
    Again differentiating w.r to x both sides
    $$\Rightarrow $$   $${y}''-{y}'=6c_{2}e^{3x}+20c_{3}e^{5x}$$          (iv)
    using (iv)-3(iii) we get
         $${y}''-4{y}'+3y=8c_{3}e^{5x}$$          (v)
    $$\Rightarrow $$   $${y}'''-4{y}''+3{y}'=8\times 5c_{3}e^{5x}$$          (vi)
    using (vi)-5(v) we get
         $${y}'''-9{y}''+23{y}'-15y=0$$
    or $$\displaystyle \frac{d^{3}y}{dx^{3}}-9\frac{d^{2}y}{dx^{2}}+23\frac{dy}{dx}-15y=0$$
    Hence order of differential equation is 3.
  • Question 3
    1 / -0
    The order of differential equation of all parabola's having directrix parallel to $$x$$-axis is:
    Solution
    Given, the parabola is $$(x-h)^2=4a(y-k)$$
    Since, there are 3 unknown constants.
    Therefore, order of differential equation will be 3
  • Question 4
    1 / -0
    Find the solution of $$\displaystyle \left ( e^{x}+1 \right )y dy=\left ( y+1 \right )e^{x}dx$$.
    Solution
    Given  $$\displaystyle \left ( e^{x}+1 \right )y dy=\left ( y+1 \right )e^{x}dx$$

    or  $$\displaystyle \frac{y}{1+y} dy=\frac{e^{x}}{1+e^x}dx$$

    or  $$\displaystyle \frac{1+y - 1}{1+y} dy=\frac{e^{x}}{1+e^x}dx$$

    or  $$\displaystyle dy-\frac{1}{1+y} dy=\frac{e^{x}}{1+e^x}dx$$

    Integrating,

    $$\displaystyle \int dy-\int\frac{1}{1+y} dy=\int\frac{e^{x}}{1+e^x}dx$$

    or  $$\displaystyle y-\log \left ( y+1 \right )=\log \left ( e^{x}+1 \right )+C$$

    or $$\displaystyle k\left ( y+1 \right )\left ( e^{x}+1 \right )=e^{y}.$$ Taking $$\displaystyle c= \log k.$$
  • Question 5
    1 / -0
    A function $$y=f(x)$$ has a second order derivative $${f}''\left ( x \right )=6\left ( x-1 \right )$$. If its graph passes through tbe point $$(2, 1)$$ and at that point the tangent to the curve is $$y=3x-5$$, then the function is:
    Solution
    Given $${f}''\left ( x \right )=6\left ( x-1 \right )$$
    $$\Rightarrow $$   $$\displaystyle {f}'\left ( x \right )=\frac{6\left ( x-1 \right )^{2}}{2}+c$$
    $$\Rightarrow $$   $$3=3+c$$          $$\left \{ \because f\left ( x \right )=y=3x+5, {f}'\left ( x \right )=3\forall x\epsilon R \right \}$$
    $$\Rightarrow $$   $$c=0$$
    so $${f}'\left ( x \right )=3\left ( x-1 \right )^{2}$$
    $$\Rightarrow $$   $$f\left ( x \right )=\left ( x-1 \right )^{3}+c_{1}$$ as curve passes through (2, 1)
    $$\Rightarrow $$   $$1=\left ( 2-1 \right )^{3}+c_{1}$$
    $$\Rightarrow $$   $$c_{1}=0$$
    $$\therefore $$   $$f\left ( x \right )=\left ( x-1 \right )^{3}$$
  • Question 6
    1 / -0
    Find the solution of $$\displaystyle \left ( 1-x \right )dy-\left ( 3+y \right )dx=0$$
    Solution
    Given,  $$\displaystyle \left ( 1-x \right )dy-\left ( 3+y \right )dx=0$$
     $$\Rightarrow \displaystyle \frac{dy}{3+y}=\frac{dx}{1-x}$$
    or $$\displaystyle \int \frac{dy}{3+y}=\int \frac{dx}{1-x}+c$$
    or $$\displaystyle \log \left ( 3+y \right )=-\log \left ( 1+x \right )+c,$$
    or $$\displaystyle \log \left ( 3+y \right )+\log \left ( 1-x \right )=c,$$
    or $$\displaystyle \log \left ( 3+y \right )\left ( 1-x \right )=c,or \log k.$$
    $$\displaystyle \therefore \left ( 3+y \right )\left ( 1-x \right )=k$$ is the required solution. c being arbitrary constant, can be put equal to
    $$\displaystyle \log k$$ for the sake of simplification.
  • Question 7
    1 / -0
    The solution of the equation $$\displaystyle \frac{d^{2}y}{dx^{2}}=e^{-2x}$$ is:
    Solution
    $$\dfrac { d^{ 2 }y }{ dx^{ 2 } } =e^{ -2x }$$
    Integrating both sides w.r.t. x
    $$\dfrac { dy }{ dx } =\cfrac { e^{ -2x } }{ -2 } +c$$
    Again integrating w.r.t. x
    $$y=\dfrac { e^{ -2x } }{ 4 } +cx+d$$
  • Question 8
    1 / -0
    Find the solution of $$\displaystyle \left ( 1-x^{2} \right )\left ( 1-y \right )dx=xy\left ( 1+y \right )dy.$$
    Solution
    Given $$\displaystyle \left ( 1-x^{2} \right )\left ( 1-y \right )dx=xy\left ( 1+y \right )dy.$$

     $$\displaystyle \frac{1-x^{2}}{x}dx=\frac{y\left ( 1+y \right )}{1-y}dy$$

     $$\displaystyle \left ( \frac{1}{x}-x \right )dx=\left ( -y-2+\frac{2}{1-y} \right )dy.$$

    Integrating we get,

    $$\displaystyle \therefore \log x-\frac{x^{2}}{2}=-\frac{y^{2}}{2}-2y-2\log \left ( 1-y \right )+k$$
  • Question 9
    1 / -0
    $$\displaystyle ydx-x dy=xy\:dx$$
    Then the solution is:
    Solution
    $$\displaystyle ydx-x dy=xy\:dx$$

    $$\Rightarrow \displaystyle y\left ( 1-x \right )dx=xdy$$ 

    $$\Rightarrow \displaystyle \left(\frac{1}{x}-1\right) dx =\frac{dy}{y}$$

    Integrating we get, $$\ln x-x = \ln y+\ln k =\ln ky$$

    $$\Rightarrow x=\ln\left(\tfrac{x}{ky}\right)$$ 

    $$\Rightarrow \displaystyle x=ky\:e^{x}.$$
  • Question 10
    1 / -0
    Solve the given differential equation  $$\displaystyle \left ( xy^{2}+x \right )dx+\left ( yx^{2}+y \right )dy=0.$$
    Solution
    Given, $$\displaystyle \left ( xy^{2}+x \right )dx+\left ( yx^{2}+y \right )dy=0.$$

    $$\displaystyle \frac{2y}{1+y^2}dy =-\cfrac{2x}{a+x^2}dx$$

    Integrating we get, 

    $$\log(1+y^2)=-\log(1+x^2)+\log c$$

    $$\Rightarrow \displaystyle \left ( x^{2}+1 \right )\left ( y^{2}+1 \right )=c$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now