Self Studies

Differential Equations Test - 27

Result Self Studies

Differential Equations Test - 27
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find general solution of  $$\sqrt{1 + 4x^{2}} dy = y^{3} xdx$$.
    Solution
    $$\sqrt { 1+4{ x }^{ 2 } } dy={ y }^{ 3 }xdx\\$$
    $$ \Rightarrow \cfrac { dy }{ dx } =\cfrac { x{ y }^{ 3 } }{ \sqrt { 1+4{ x }^{ 2 } }  } \\ \Rightarrow \cfrac { \cfrac { dy }{ dx }  }{ { y }^{ 3 } } =\cfrac { x }{ \sqrt { 1+4{ x }^{ 2 } }  } $$

    Integrating both sides w.r.t x
    $$\displaystyle \int { \cfrac { \frac { dy }{ dx }  }{ { y }^{ 3 } } dx } =\displaystyle \int { \cfrac { x }{ \sqrt { 1+4{ x }^{ 2 } }  } dx } $$

    $$\displaystyle \int { \cfrac { 1  }{ { y }^{ 3 } } dy } =\displaystyle \int { \cfrac { x }{ \sqrt { 1+4{ x }^{ 2 } }  } dx } $$

    $$ \Rightarrow -\cfrac { 1 }{ 2{ y }^{ 2 } } =\cfrac { 1 }{ 4 } \sqrt { 1+4{ x }^{ 2 } } +c$$
  • Question 2
    1 / -0
    The solution of the differential equation $$\displaystyle \left( 1+\cos { x }  \right) \frac { dy }{ dx } =1-\cos { x } $$ is
    Solution
    $$\displaystyle \left( 1+\cos { x }  \right) \frac { dy }{ dx } =1-\cos { x } $$
    $$\displaystyle \Rightarrow \int { dy } =\int { \frac { 1-\cos { x }  }{ 1+\cos { x }  } dx } $$
    $$\displaystyle \Rightarrow \int { dy } =\int { \tan ^{ 2 }{ \frac { x }{ 2 }  } dx } +c$$
    $$\displaystyle \Rightarrow y=\int { \left( \sec ^{ 2 }{ \frac { x }{ 2 }  } -1 \right) dx } +c$$
    $$\displaystyle \Rightarrow y=2\tan { \frac { x }{ 2 }  } -x+c$$
  • Question 3
    1 / -0
    The equation of the curve in which sub-normal varies as the square of the ordinate is ($$k$$ is constant of proportionality)
    Solution
    $$|y\dfrac{dy}{dx}|=ky^{2}$$

    $$\dfrac{dy}{dx}=ky$$

    $$\dfrac{dy}{y}=k.dx$$

    Integrating both sides
    $$lny=kx+c$$
    $$y=e^{kx}.e^{c}$$
    Or 
    $$y=Ce^{kx}$$ where $$C=e^{c}$$.
  • Question 4
    1 / -0
    Solve : $$(\tan y)\displaystyle \frac{dy}{dx} = \sin(x + y) + \sin(x - y)$$
    Solution
    Given, $$(\tan y)\displaystyle \frac{dy}{dx} = \sin(x + y) + \sin(x - y)=2\sin x\cos y$$

    $$\Rightarrow (\sec y \tan y)dy = \sin x dx$$

    $$\Rightarrow d(\sec y) =- 2d(\cos x)$$

    Integrating on both sides we get,

    $$\sec y = -2\cos x+c$$
  • Question 5
    1 / -0
    Find general solution of $$\displaystyle \frac{2dy}{dx} = \frac{y(x + 1)}{x}$$.
    Solution
    Given,
    $$2\dfrac { dy }{ dx } =\dfrac { y\left( x+1 \right)  }{ x } $$

    $$ \Rightarrow \dfrac {  2dy  }{ y } =\dfrac { x+1 }{ x } dx$$

    Integrating both sides w.r.t $$x$$

    $$\displaystyle \int { \dfrac { 2 dy   }{ y } } =\displaystyle \int { \dfrac { x+1 }{ x } dx } $$

    $$\displaystyle \int { \dfrac { 2 dy   }{ y } } =\displaystyle \int { 1+\dfrac { 1 }{ x } dx } $$

    $$ \Rightarrow 2\log { y } =x+\log { |x| } +c$$

    $$ \Rightarrow \log { { y }^{ 2 } } =x+\log {| x| } +c$$
  • Question 6
    1 / -0
    A solution of the differential equation, $$\left ( \displaystyle \dfrac {dy}{dx} \right ) ^2\, -\,x\, \displaystyle \dfrac {dy}{dx}\, +\, y\, =\, 0$$ is
    Solution
    $$y=-{ \left( \cfrac { dy }{ dx }  \right)  }^{ 2 }+x\cfrac { dy }{ dx } \\ \Rightarrow \cfrac { dy }{ dx } =x\cfrac { { d }^{ 2 }y }{ { dx }^{ 2 } } +\cfrac { dy }{ dx } -2\cfrac { dy }{ dx } \cfrac { { d }^{ 2 }y }{ { dx }^{ 2 } } \\ \Rightarrow \cfrac { dy }{ dx } =\cfrac { dy }{ dx } +\cfrac { { d }^{ 2 }y }{ { dx }^{ 2 } } \left( x-2\cfrac { dy }{ dx }  \right) \\ \Rightarrow \cfrac { { d }^{ 2 }y }{ { dx }^{ 2 } } \left( x-2\cfrac { dy }{ dx }  \right) =0$$
    $$\Rightarrow \cfrac { { d }^{ 2 }y }{ { dx }^{ 2 } } =0$$ or $$x-2\cfrac { dy }{ dx } =0$$
    $$\Rightarrow y=cx-c^{ 2 }$$ or $$y=\cfrac { { x }^{ 2 } }{ 4 } $$
  • Question 7
    1 / -0
    Find the equation of the curve for which the normal at any point (x, y) passes through the origin. The curve represents a :
    Solution
    The equation of the normal at any point $$(x,y)$$ of the curve is 
    $$\cfrac { dy }{ dx } \left( Y-y \right) +\left( X-x \right) =0$$
    Since the required curve passes through origin
    $$\cfrac { dy }{ dx } \left( 0-y \right) +\left( 0-x \right) =0\Rightarrow 2\left( -y \right) dy+2\left( -x \right) dx=0$$
    Integrating $${ x }^{ 2 }+{ y }^{ 2 }=c$$
  • Question 8
    1 / -0
    Which one of the following curves represents the solution of the initial value problem $$Dy = 100- y$$, where $$y(0) = 50$$
    Solution
    $$\displaystyle \frac {dy}{dx}\, =\, 100\, -\, y$$
    $$\Rightarrow\, \displaystyle \int \frac {dy}{100-y}\, =\int \, dx\, \Rightarrow\, -\, ln\, (100-y)\, =\, x\, +\, c$$
    since $$y(0)\, =\, 50\,\, \Rightarrow\, -\, ln\, 50\, =\, c$$
    $$\therefore\, -\, ln(100\, -y)\, =\, x\, -\, ln\, 50$$
    $$\Rightarrow\,

    ln\, \left ( \displaystyle \frac {50}{100-y} \right )\, =\, x\,

    \Rightarrow\, \displaystyle \frac {50}{10-y}\, =\, e^x$$
  • Question 9
    1 / -0
    Find general solution of $$y-x\, \cfrac {dy}{dx}\, =\, b(1+x^2\cfrac {dy}{dx})$$ is:
    Solution
    $$y-x\, \cfrac{dy}{dx}\, =\, b\left(1+x^2\cfrac{dy}{dx}\right)$$
    $$\Rightarrow\quad

    y- b = (x+bx^2)\, \displaystyle \frac {dy}{dx}\,

    \Rightarrow\, \displaystyle \frac {dx}{x(1+bx)}\, =\, \displaystyle

    \frac {dy}{y-b}$$
    $$\Rightarrow\quad \int \left ( \displaystyle \frac

    {1}{x}\, -\, \displaystyle \frac {b}{1+bx} \right )\, dx\, =\, \log\,

    (y-b)\, +\, \log\, c$$
    $$\Rightarrow \log x - \log (1 + bx) = \log (y - b) + \log c$$
    $$\Rightarrow\quad \displaystyle \frac {x}{c}\, =\, (1+bx)(y-b)$$
    $$\Rightarrow\quad b+ \left (\displaystyle \frac {1}{c}\, +\, b^2 \right ) x = y (1+bx)$$
    $$\Rightarrow\quad b+kx=y(1+bx)$$
  • Question 10
    1 / -0
    The solution to the differential equation $$y\ln y \, +\, xy'\, =\, 0\,$$ where$$\, y(1)\, =\, e$$, is:
    Solution
    $$y\ln { y } +xy'=0\\ \Rightarrow \cfrac { dy }{ dx } =-\cfrac { \left( \log { y }  \right) y }{ x } \\ \Rightarrow \cfrac { dy  }{ \left( \log { y }  \right) y } =-\cfrac { 1 }{ x } $$
    Integrating both sides w.r.t x
    $$\int { \cfrac { dy   }{ \left( \log { y }  \right) y }} =\int { -\cfrac { 1 }{ x } dx } \\ \Rightarrow \log { \log { y }  } =-\log { x } +c\\ \Rightarrow y={ e }^{ c/x }$$
    Now $$y\left( 1 \right) =e\Rightarrow x\ln { y } =1$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now