Self Studies

Differential Equations Test - 28

Result Self Studies

Differential Equations Test - 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Which of the following differential equations has y = x as one of its particular solution?
    Solution
    $$y=x\\
    \dfrac{dy}{dx}=1\\
    \dfrac{d^2y}{dx^2}=0$$
    Now putting these values in given options then we will find that
    Option C is correct
    $$\dfrac{d^2y}{dx^2}-x^2\dfrac{dy}{dx}+xy=0$$
  • Question 2
    1 / -0
    The equation of a curve passing through $$\displaystyle \left( 2,\frac { 7 }{ 2 }  \right) $$ and having gradient $$\displaystyle 1-\frac { 1 }{ { x }^{ 2 } } $$ at $$(x,y)$$ is:
    Solution
    We have, $$\displaystyle \frac { dy }{ dx } =1-\frac { 1 }{ { x }^{ 2 } } \Rightarrow y=x+\frac { 1 }{ x } +c$$
    This passes through $$\displaystyle \left( 2,\frac { 7 }{ 2 }  \right) $$, therefore 
    $$\displaystyle \frac { 7 }{ 2 } =2+\frac { 1 }{ 2 } +c\Rightarrow c=1$$
    Thus the equation of the curve is
    $$\displaystyle y=x+\frac { 1 }{ x } +1\Rightarrow xy={ x }^{ 2 }+x+1$$
  • Question 3
    1 / -0
    Which of the following differential equations has $$y = c_1 e^x + c_2 e^{x}$$ as the general solution?
    Solution
    $$y=c_1e^x+c_2e^x\\
    \dfrac{dy}{dx}=c_1e^x+c_2e^x\\
    \dfrac{d^2y}{dx^2}=c_1e^x+c_2e^x\\
    \therefore \dfrac{d^2y}{dx^2}-y=0$$
  • Question 4
    1 / -0
    The solution to the differential equation $$(x + 1) \displaystyle \frac{dy}{dx} - y = e^{3x} (x + 1)^2 $$ is
    Solution
    The given equation is $$\displaystyle \dfrac{dy}{dx} - \dfrac{y}{x + 1} = e^{3x} (x+ 1)$$
    I.F. $$= \displaystyle e^{\displaystyle \int - \dfrac{1}{x + 1} dx} = e^{\displaystyle - log  (x +  1)} = \dfrac{1}{x + 1}$$
    The solution is
    $$\displaystyle y \left ( \dfrac{1}{x +1} \right ) = \int e^{3x} (x +1). \dfrac{1}{x + 1} dx + a$$
    $$\Rightarrow \displaystyle \dfrac{y}{x +  1} = \int e^{3x} dx+ a = \dfrac{e^{3x}}{3} + a$$
    $$\Rightarrow \displaystyle \dfrac{3y}{x + 1} = e^{3x} + c, c = 3a$$
  • Question 5
    1 / -0
    The solution of differential equation 
    $$\displaystyle \frac { dy }{ dx } =-\left( \frac { y+\sin { x }  }{ x }  \right) $$ satisfying condition $$\displaystyle y(0) = 1$$, is
    Solution
    $$\displaystyle xdy=-ydx-\sin { x } dx$$
    $$\displaystyle \Rightarrow -\sin { x } dx=xdy+ydx$$
    $$\displaystyle \Rightarrow -\sin { x } dx=d\left( xy \right) $$
    $$\displaystyle \Rightarrow \int { -\sin x { dx }  } =\int { d\left( xy \right)  } $$
    $$\displaystyle \Rightarrow \cos { x } =xy+c$$
    $$\displaystyle y(0)=1\Rightarrow  c=1$$
    $$\displaystyle \Rightarrow \cos { x } =xy+1$$
  • Question 6
    1 / -0
    The solution of the equation $$\displaystyle \frac { { d }^{ 2 }y }{ { dx }^{ 2 } } ={ e }^{ x }+{ e }^{ -x }$$ is-
    Note : (where c & d are arbitrary constants in the given options)
    Solution
    Given, $$\displaystyle \frac { { d }^{ 2 }y }{ { dx }^{ 2 } } ={ e }^{ x }+{ e }^{ -x }$$
    Integrating gives  
    $$\Rightarrow \displaystyle \frac { dy }{ { dx } } ={ e }^{ x }-{ e }^{ -x }-c$$
    Again integrating,
    $$\displaystyle \Rightarrow y={ e }^{ x }+{ e }^{ -x }-cx+d$$
  • Question 7
    1 / -0
    Solution of the differential equation 
    $$\displaystyle \left( 2x-y+2 \right) dx+\left( 4x-2y-1 \right) dy=0$$ is 
    Solution
    Given equation is $$\displaystyle \frac { dy }{ dx } =\frac { -\left\{

    \left( 2x-y \right) +2 \right\}  }{ 2\left( 2x-y \right) -1 } $$
    Put $$\displaystyle 2x-y=v\Rightarrow \displaystyle 2-\frac { dy }{ dx } =\frac { dv }{ dx } $$

    $$\Rightarrow\displaystyle -\left( \frac { dv }{ dx } -2 \right) =-\left( \frac { v+2 }{ 2v-1 }  \right) $$

    $$\displaystyle

    \Rightarrow \frac { dv }{ dx } =\left( \frac { v+2 }{ 2v-1 } +2 \right)

    \Rightarrow \frac { dv }{ dx } =\frac { 5v }{ 2v-1 } $$

    $$\displaystyle \Rightarrow \int { \frac { 2v-1 }{ 5v }  } dv=\int { dx } $$

    $$\displaystyle \Rightarrow \frac { 2 }{ 5 } v-\frac { 1 }{ 5 } \log { v } =x+\log { c } $$

    $$\displaystyle

    \Rightarrow \frac { 2 }{ 5 } \left( 2x-y \right) -\frac { 1 }{ 5 } \log

    { \left( 2x-y \right)  } =x+\log { c } $$

    $$\displaystyle \Rightarrow 2\left( 2x-y \right) -\log { \left( 2x-y \right)  } =5x+5\log { c } $$

    $$\displaystyle \Rightarrow 4x-2y-\log { \left( 2x-y \right)  } =5x-\log { c } $$

    $$\displaystyle \Rightarrow \log { c } -\log { \left( 2x-y \right)  } =\left( x+2y \right) $$

    $$\displaystyle\Rightarrow \log { \left( \frac { c }{ 2x-y }  \right)  } =\left( x+2y \right) $$

    $$\displaystyle \Rightarrow\left( \frac { c }{ 2x-y }  \right) ={ e }^{ \left( x+2y \right)  }$$

    $$\displaystyle\Rightarrow c.{ e }^{ -\left( x+2y \right)  }=\left( 2x-y \right) $$
  • Question 8
    1 / -0
    Solution of differential equation $$\displaystyle \frac { dx }{ dy } =\tan { x } \left( 1+ysinx \right) $$ is given by -
    Solution
    $$\displaystyle \cot { x }* \csc x\frac { dx }{ dy } = \csc x + y
    $$
    Put $$ \csc x=t$$
    $$\displaystyle \Rightarrow -\csc x \ * \cot x\frac { dx }{ dy } =\frac { dt }{ dy } $$
    Now D.E is $$\displaystyle \frac { dt }{ dy } =-t-y$$

    I.F. =$$\displaystyle { e }^{\int dy }{ ={ e }^{ y } } $$
    solution is $$\displaystyle t.{ e }^{ y }=\int { -y{ e }^{ y }dy } =-ye^y+e^y+c $$
    $$\displaystyle \Rightarrow \csc x=-y+1+Ce^{-y}$$
  • Question 9
    1 / -0
    The general solution of the differential equation $$\dfrac{y\, dx-x\, dy}{y}=0$$ is:
    Solution
    $$\dfrac{ydx-xdy}{y}=0\\
    dx-\dfrac{x}{y}dy=0\\
    dx=\dfrac{x}{y}dy\\
    \dfrac{dx}{x}=\dfrac{dy}{y}\\
    lnx=lny+lnc\\
    x=yc$$
  • Question 10
    1 / -0
    The solution of the differential equation $$\dfrac { dy }{ dx } =\dfrac { x-y+3 }{ 2\left( x-y \right) +5 } $$ is
    Solution
    Given differential equation is
    $$\dfrac { dy }{ dx } =\dfrac { x-y+3 }{ 2\left( x-y \right) +5 } $$
    Let $$x-y=v\Rightarrow \dfrac { dy }{ dx } =1-\dfrac { dv }{ dx } $$
    $$\therefore \dfrac { dv }{ dx } =\dfrac { v+2 }{ 2v+5 } $$
    $$\Rightarrow \displaystyle\int { \dfrac { 2v+5 }{ v+2 } dv } =\displaystyle\int { dx } $$
    $$\Rightarrow \displaystyle\int { \left( 2+\dfrac { 1 }{ v+2 }  \right) dv } =\displaystyle\int { dx } $$
    $$\Rightarrow 2v+\log { \left( v+2 \right)  } =x+c$$
    $$\Rightarrow 2\left( x-y \right) +\log { \left( x-y+2 \right)  } =x+c$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now