Self Studies

Differential Equations Test - 29

Result Self Studies

Differential Equations Test - 29
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The general solution of the differential equation $$\log _{ e }{ \left( \cfrac { dy }{ dx }  \right)  } =x+y$$ is:
    Solution
    Given $$\log _{ e }{ \left( \cfrac { dy }{ dx }  \right)  } =x+y$$

    $$\Rightarrow \cfrac { dy }{ dx } ={ e }^{ x+y }={ e }^{ x }{ e }^{ y }$$
    $$\Rightarrow { e }^{ -y }dy={ e }^{ x }dx$$

    On integrating, we get

    $$-{ e }^{ -y }={ e }^{ x }-C$$
    $$\Rightarrow C={ e }^{ x }+{ e }^{ -y }$$
  • Question 2
    1 / -0
    Find the general solution of $$dy=y \sec x dx$$.
    Solution
    Given Differential Equation is $$dy=y\sec { x } dx$$

    Integrating with respect to $$x$$ gives,

    $$\int { \cfrac { 1 }{ y } dy } =\int { \sec { x }  } dx$$

    $$\ln { y } =\ln { \left( \sec { x } +\tan { x }  \right)  } +\ln { c } $$

    Where $$c$$ is the integration constant,

    $$\therefore y=c\left( \sec { x } +\tan { x }  \right) $$.
  • Question 3
    1 / -0
    The solution of the differential equation $$\dfrac{dx}{x}+\dfrac{dy}{y}=0$$ is
    Solution
    $$ \dfrac{dx}{x}+\dfrac{dy}{y} = 0 $$
    $$ \Rightarrow \dfrac{dx}{x} = \dfrac{-dy}{y} $$
    integrating,
    $$\displaystyle = \int \dfrac{dy}{y} = -\int \dfrac{dx}{x} $$
    $$ = lny = -lnx+c $$
    $$ \Rightarrow lnx.y = c \Rightarrow \boxed {xy = constant} $$ 

  • Question 4
    1 / -0
    The order of the differential equation $$\left [1 + \left (\dfrac {dy}{dx}\right )^{5}\right ]^{\dfrac {2}{3}} = \dfrac {d^{3}y}{dx^{3}}$$ is:
    Solution
    $$\left [1 + \left (\dfrac {dy}{dx}\right )^{5}\right ]^{\dfrac {2}{3}} = \dfrac {d^{3}y}{dx^{3}}$$
    $$\Rightarrow \left [1 + \left (\dfrac {dy}{dx}\right )^{5}\right ]^ {2} = \left(\dfrac {d^{3}y}{dx^{3}}\right)^3$$
    Hence order of above differential equation is $$3$$ 
  • Question 5
    1 / -0
    The general solution of $$\cfrac{dy}{dx}=\cfrac{2x-y}{x+2y}$$ is
    Solution
    Given $$\cfrac{dy}{dx}=\cfrac{2x-y}{x+2y}$$
    Put $$y=vx$$
    $$\cfrac{dy}{dx}=v+x\cfrac{dv}{dx}$$
    $$\therefore$$ $$v+x\cfrac { dv }{ dx } =\cfrac{2-v}{1+2v}$$
    $$\Rightarrow$$ $$x\cfrac { dv }{ dx } =\cfrac{2-v-v(1+2v)}{1+2v}$$
    $$\Rightarrow$$ $$x\cfrac { dv }{ dx } =\cfrac{2-2v-2{v}^{2}}{1+2v}$$
    $$\Rightarrow$$ $$\int { \cfrac { 1+2v }{ 2(1-v-{ v }^{ 2 }) }  } =\int { \cfrac { 1 }{ x }  } dx$$
    $$\Rightarrow$$ $$\log{a}-\cfrac{1}{2}\log{1-v-{v}^{2})}=\log{x}$$
    $$\Rightarrow$$ $$2\log {a}-\log{(1-v-{v}^{2}}=2\log {x}$$
    $$\Rightarrow$$ $$\log {c}=\log{[{x}^{2}(1-v-{v}^{2}]}$$ [Let $${a}^{2}=c]$$
    $$\Rightarrow$$ $$c={x}^{2}(1-v-{v}^{2})$$
    $$\Rightarrow$$ $$c={x}^{2}(1-\cfrac{y}{x}-\cfrac{{y}^{2}}{{x}^{2}})$$
    $$\Rightarrow$$ $$c={x}^{2}(\cfrac{{x}^{2}-xy-{y}^{2}}{{x}^{2}})$$
    $$\Rightarrow$$ $${x}^{2}-xy-{y}^{2}=c$$
  • Question 6
    1 / -0
    If the general solutions of a differential equation is $$(y+c)^2=cx$$, where $$c$$ is an arbitrary constant, then the order and degree of differential equation are:
    Solution
    Given general solution is $${(y+c)}^{2}=cx$$
    Now differentiate it with respect to $$x$$ on both sides
    we get $$2(y+c)\frac{dy}{dx} = c$$ , Let $$\frac{dy}{dx}$$ be $$Y$$
    $$\Rightarrow c=\frac { 2yY }{ 1-2Y } $$
    By substituting $$c$$ in general solution , we get $${ (y+\frac { 2yY }{ 1-2Y } ) }^{ 2 }=\frac { 2yY }{ 1-2Y } x$$
    $$\Rightarrow { y }^{ 2 }=2yxY(1-2Y)=2yxY-4yx{ Y }^{ 2 }$$
    Therefore the order of equation is $$1$$ and the degree of equation is $$2$$
    Therefore option $$A$$ is correct
  • Question 7
    1 / -0
    If $$f(x)$$ and $$g(x)$$ are twice differentiable functions on $$(0, 3)$$ satisfying $$f''(x) = g'', f'(1) = 4, g'(1) = 6, f(2) = 3, g(2) = 9$$, then $$f(1) - g(1)$$ is:
    Solution
    According to question,

    $$f''(x) = g''(x)$$

    Integrating w.r.t. $$x$$, we get

    $$f'(x) = g'(x) + C_{1}$$

    Put $$x = 1\Rightarrow f'(1) = g'(1) + C_{1}$$

    $$\Rightarrow 4 = 6 + C_{1}$$

    $$\therefore C_{1} = 2$$

    $$\therefore f'(x) = g'(x) - 2$$

    Again, integrating w.r.t. $$x$$, we get

    $$f(x) = g(x) - 2x + C_{2}$$

    $$\Rightarrow 3 = 9 - 4 + C_{2} \Rightarrow C_{2} = -2$$

    $$\therefore f(x) = g(x) - 2x - 2$$

    Put $$x = 1$$, we get

    $$f(1) - g(1) = -2(1) - 2 = -4$$
  • Question 8
    1 / -0
    The general solution of the differential equation $$\displaystyle \frac { dy }{ dx } +\frac { 1+\cos { 2y }  }{ 1-\cos { 2x }  } =0$$ is given by:
    Solution
    $$ \displaystyle \frac { dy }{ dx } +\frac { 1+\cos { 2y }  }{ 1-\cos { 2x }  } =0$$

    $$\displaystyle \Rightarrow \frac { dy }{ dx } = - \frac { \cos ^{ 2 }{ y }  }{\sin ^{ 2 }{ x }  } $$

    $$\int\dfrac {dy}{\cos^2y} = - \int \dfrac {dx}{\sin^2x}$$

    $$\int \sec^2y dy = - \int \csc^2x dx$$

    $$\tan y +c  = \cot x +C$$
    $$\tan y - \cot x = c$$
  • Question 9
    1 / -0
    Which of the following equation is a linear differential equation of order $$3$$ ?

    [Note: The original question asks for linear equation, but it should be linear differential equation]
    Solution
    Linear equation is an equation between two variables that gives a straight line and order of linear equation is highest order derivative in linear equation.
    Since, in option A equation is linear equation in which highest order is $$3$$.
    $$\therefore$$ option A is correct.
  • Question 10
    1 / -0
    Find a particular solution for the following differential equation.
    $$y'-4y'-12y=te^{4t}$$
    Solution

    Given, $${ y }'-4{ y '}-12y=t{ e }^{ 4t }$$

    $$\Rightarrow  -{ 3y }'-12y=t{ e }^{ 4t }\\ \Rightarrow { y }'+4y=-\dfrac{t{ e }^{ 4t }}{3}\\ \Rightarrow \dfrac { dy }{ dt } +4y=-\dfrac{1}{3}t{ e }^{ 4t }$$

    This is a linear form of differential equation with

    $$\displaystyle{\text{I.F.}={ e }^{ \int  4dt }={ e }^{ 4t }}$$

    Solution of the differential equation is 

    $$\displaystyle{y(\text{I.F.})=\int { Q( } \text{I.F.})dt\\ y{ e }^{ 4t }=\int { \dfrac { -t{ e }^{ 4t } }{ 3 } { e }^{ 4t } } dt\\ y{ e }^{ 4t }=\dfrac { -1 }{ 3 } \int { t{ e }^{ 8t } } dt\\ y{ e }^{ 4t }=\dfrac { -1 }{ 3 } \left\{ t\int { { e }^{ 8t } } -\int { \dfrac { d }{ dt } (t)\int { { e }^{ 8t } }  }  \right\} \\ y{ e }^{ 4t }=\dfrac { -1 }{ 3 } \left\{ \dfrac { t{ e }^{ 8t } }{ 8 } -\int { \dfrac { { e }^{ 8t } }{ 8 }  }  \right\} \\ y{ e }^{ 4t }=\dfrac { -1 }{ 3 } \left\{ \dfrac { t{ e }^{ 8t } }{ 8 } -\dfrac { { e }^{ 8t } }{ 64 }  \right\} \\ y{ e }^{ 4t }=\dfrac { -{ e }^{ 8t } }{ 3 } \left\{ \dfrac { 8t-1 }{ 64 }  \right\} \\ y=\dfrac { -{ e }^{ 4t } }{ 192 } (8t-1)}$$

    So, option D is correct.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now