Self Studies

Differential Equations Test - 30

Result Self Studies

Differential Equations Test - 30
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Verify that $$y=Cx^3$$ is a solution of the differential equation $$xy'-3y=0$$ for any value of C. Then

    find the particular solution determined by the initial condition $$y=2$$ when $$x=-3$$.
    Solution
    Given that $$y=C{ x }^{ 3 }$$ is the solution of the differential equation$$x{ y }^{ ' }=3y$$
    So to get a particular solution we need to find the value of $$C$$  for a given initial value condition,
    i.e.,$$y=2$$ when $$x=-3$$,
    Substituting this in the general solution gives,
    $$2=C(-27)$$
    $$\Longrightarrow C=-\cfrac { 2 }{ 27 } $$
    $$\therefore$$ the particular solution is $$y=-\cfrac { 2 }{ 27 } { x }^{ 3 }$$
  • Question 2
    1 / -0
    The solution for the differential equation $$\cfrac { dy }{ y } +\cfrac { dx }{ x } =0$$ is:
    Solution
    We have, $$\cfrac { dy }{ y } +\cfrac { dx }{ x } =0$$
    Integrate both sides,
    $$\displaystyle \int\left(\cfrac { dy }{ y } +\cfrac { dx }{ x } \right)=\int 0$$
    $$\displaystyle\Rightarrow  \int\cfrac { dy }{ y } +\int \cfrac { dx }{ x } =c$$
    , since differentiation any constant is 0
    $$\Rightarrow \ln x+\ln y=c$$, use basic formula 
    $$\Rightarrow \ln(xy)=c$$, product rule of logarithm $$\log a+\log b=\log(ab)$$ 
    $$\Rightarrow xy=e^c=C$$
  • Question 3
    1 / -0
    The solution of differential equation $$x \dfrac {dy}{dx} + 2y= x^{2}$$ is ____
    Solution
    We have,  $$x \dfrac {dy}{dx} + 2y= x^{2}$$
    Divide each sides by $$x$$
    $$\Rightarrow \dfrac{dy}{dx}+\dfrac{2}{x}y=x$$
    Integrating factor $$=e^{ \int \frac{2}{x}dx}=e^{2\ln x}=e^{\ln x^2}=x^2$$
    Hence solution is given by,
    $$\displaystyle y(x^2)=\int x^2\cdot x dx+c$$
    $$\displaystyle \Rightarrow x^2y=\int x^3dx+C=\dfrac{x^4}{4}+c$$
    $$\Rightarrow y=\dfrac{x^4+4c}{x^2}=\dfrac{x^4+C}{4x^2}$$
  • Question 4
    1 / -0
    The solution of the differential equation $$y\sin\left(\dfrac{x}{y}\right)dx=\left(x \sin\left(\dfrac{x}{y} \right)-y \right) dy$$ satisfying $$y(\dfrac{\pi}{4})=1$$ is
    Solution
    Given differential equation is $$\cfrac { y\sin { \frac { x }{ y }  }  }{ x\sin { \frac { x }{ y }  } -y } =\cfrac { dy }{ dx } $$
    Now replace $$x=vy$$ such that,$$\cfrac { dx }{ dy } =v+y\cfrac { dv }{ dy } $$
    $$\Longrightarrow v+y\cfrac { dv }{ dy } =\cfrac { v\sin { v } -1 }{ \sin { v }  }  $$
    $$\Longrightarrow y\cfrac { dv }{ dy } =\cfrac { -1 }{ \sin { v }  } $$
    Separating the variables and integrating gives,
    $$\int { \sin { v }  } dv=\int { \cfrac { 1 }{ y }  } dy$$,
    $$\Longrightarrow -\cos { v } +c=\ln { y } $$
    Given $$y\left( \cfrac { \pi  }{ 4 }  \right) =1$$
    $$\Longrightarrow c=\cfrac { 1 }{ \sqrt { 2 }  } $$
    $$\therefore$$ the particular solution is ,
    $$\cos { \cfrac { x }{ y }  } =-\ln { y } +\cfrac { 1 }{ \sqrt { 2 }  } $$
  • Question 5
    1 / -0
    Solution of $$\cfrac { dx }{ dy } +mx=0$$, $$m< 0$$ is
    Solution
    Given differential equation is $$\dfrac{dx}{dy}+mx=0$$
    $$\Rightarrow \dfrac{dx}{x}=-mdy$$
    Now integrate both sides,
    $$\ln x=-my+C$$
    $$\Rightarrow x=e^{-my+C}=e^{-my}\cdot e^C$$
    $$\Rightarrow x=ce^{-my}$$, where $$c=e^C$$
  • Question 6
    1 / -0
    The solution of $$\dfrac {d^{2}x}{dy^{2}} - x = k$$, where $$k$$ is a non-zero constant, vanishes when $$y = 0$$ and tends of finite limit as $$y$$ tends to infinity, is
    Solution
    We can write given differential equation as,
    $$(D^{2} - 1)x = k ... (i)$$
    where, $$D = \dfrac {d}{dy}$$
    Its auxiliary equation is $$m^{2} - 1 = 0$$, so that
    $$m = 1, -1$$
    Hence, $$CF = C_{1}e^{y} + C_{2}e^{-y}$$
    where $$C_{1}, C_{2}$$ are arbitrary constants
    Now, also $$PI = \dfrac {1}{D^{2} - 1}k$$
    $$= k.\dfrac {1}{D^{2} - 1} e^{0.y}$$
    $$= k.\dfrac {1}{0^{2} - 1}e^{0.y} = -k$$
    So, solution of eq. (i) is
    $$x = C_{1}e^{y} + C_{2}e^{-y} - k ... (ii)$$
    Given that $$x = 0$$, when $$y = 0$$
    So, $$0 = C_{1} + C_{2} - k$$ (From (ii))
    $$\Rightarrow C_{1} + C_{2} = k .... (iii)$$
    Multiplying both sides of eq. (ii) by $$e^{-y}$$, we get
    $$x.e^{-y} = C_{1} + C_{2}e^{-2y} - ke^{-y} ... (iv)$$
    Given that $$x\rightarrow m$$ when $$y\rightarrow \infty, m$$ being a finite quantity.
    So, eq (iv) becomes
    $$x\times 0 = C_{1} + C_{2} \times 0 - (k\times 0)$$
    $$\Rightarrow C_{1} = 0 ....(v)$$
    From eqs. (iv) and (v), we get
    $$C_{1} = 0$$ and $$C_{2} = k$$
    Hence, eq. (ii) becomes
    $$x = ke^{-y} - k = k(e^{-y} - 1)$$ which is the required solution.
  • Question 7
    1 / -0
    What is the general solution of the differential equation $${ e }^{ x }\tan { y } dx+\left( 1-{ e }^{ x } \right) \sec ^{ 2 }{ y } dy=0$$?
    Solution
    $${ e }^{ x }\tan ydx+(1−{ e }^{ x })\sec ^{ 2 }{ y } dy=0$$ 
    $$\Rightarrow \dfrac { { e }^{ x } }{ 1-{ e }^{ x } } dx+\dfrac {\sec  ^{ 2 }{ y }  }{ \tan y } dy=0$$ ..... $$(i)$$
    Now, to calculate $$\displaystyle \int { \dfrac { { e }^{ x } }{ 1-{ e }^{ x } } dx }$$ 
    Put $$1-{ e }^{ x }=t\Rightarrow -{ e }^{ x }dx=dt$$ 
    $$\therefore \displaystyle \int { \frac { { e }^{ x } }{ 1-{ e }^{ x } } dx } =\int { -\frac { dt }{ t }  } =-\ln t =-\ln(1-{ e }^{ x })$$ 
    Also, $$\displaystyle \int { \frac {\sec  ^{ 2 }{ y }  }{ \tan y } dy }$$ 
    Put $$p=\tan y\Rightarrow dp=\sec^{ 2 }{ y } dy$$ 
    $$\therefore \displaystyle \int { \frac {\sec  ^{ 2 }{ y }  }{ \tan y } dy } =\int { \frac { dp }{ p }  } =\ln p=\ln(\tan y)$$ 

    On integrating $$(i)$$, we get
    $$ -\ln(1-{ e }^{ x })+\ln(\tan y)=\ln k\\ \Rightarrow \ln(\tan y)=\ln(k(1-{ e }^{ x }))\\ \Rightarrow \tan y=k(1-{ e }^{ x })$$
    Hence, D is correct.
  • Question 8
    1 / -0
    What is the general solution of the differential equation $${x}^{2}dy+{y}^{2}dx=0$$?
    Solution
     $${ x }^{ 2 }dy{ +y }^{ 2 }dx=0$$ 
    $$\Rightarrow \dfrac { dy }{ { y }^{ 2 } } +\dfrac { dx }{ { x }^{ 2 } } =0$$
    On integrating, we get
    $$\Rightarrow -\dfrac { 1 }{ y } -\dfrac { 1 }{ x } +\dfrac { 1 }{ c } =0\\ \Rightarrow c(x+y)=xy$$
    Option C is correct
  • Question 9
    1 / -0
    What is the solution of $$\frac{dy}{dx}=2y-1$$ is :
    Solution
    Given : $$\cfrac{dy}{dx}=2y-1$$ ..... $$(i)$$
    Let $$2y-1=t$$ ..... $$(ii)$$
    Differentiating both sides with respect to $$x$$, we get
    $$2\cfrac{dy}{dx}=\cfrac{dt}{dx}$$
    Substituting the value of $$\cfrac{dy}{dx}$$ in the original equation, we get
    $$\cfrac{dt}{2 dx}=t$$
    Rearranging terms, we get
    $$\cfrac{dt}{t}=2dx$$
    Integrating both sides, we get
    $$\int \cfrac{dt}{t}=\int 2dx$$
    $$\Rightarrow \ln{t}=2x$$
    $$\Rightarrow t={e}^{2x}$$
    Substituting $$t$$ in $$(ii),$$ we get
    $$2y-1={e}^{2x}$$
    $$y=\cfrac{{e}^{2x}+1}{2}$$
  • Question 10
    1 / -0

    Directions For Questions

    For the next three (03) items that follow :
    The general solution of the differential equation $$(x^2 + x + 1)dy + (y^2 + y + 1)dx =0$$ is 
    $$(x + y + 1) = A(1 + Bx + Cy + Dxy)$$ where B, C and D are constants and A is parameter.

    ...view full instructions

    What is B equal to ?
    Solution
    $${\textbf{Step-1: Finding the value of D. }}$$
                     $${\text{Given,}}$$
                     $$\Rightarrow(x^2+x+1)dy+(y^2+y+1)dx=0$$
                     $$\Rightarrow(x^2+x+1)dy=-(y^2+y+1)dx$$
                     $$\Rightarrow\dfrac{dy}{y^2+y+1}=-\dfrac{dx}{x^2+x+1}$$
                     $${\text{Integrating both sides}}$$
                     $$\Rightarrow \int \dfrac{dy}{y^2+y+1}=-\int\dfrac{dx}{x^2+x+1}$$
                     $${\text{By using perfect square  method}}$$
                     $$\Rightarrow\int\dfrac{dy}{(y+\dfrac{1}{2})^2+(\dfrac{\sqrt3}{2})^2}=-\int\dfrac{dx}{(x+\dfrac{1}{2})^2+(\dfrac{\sqrt3}{2})^2}$$
                    
                     $$\Rightarrow \int\dfrac{dx}{(x+\dfrac{1}{2})^2+(\dfrac{\sqrt3}{2})^2}+\int\dfrac{dy}{(y+\dfrac{1}{2})^2+(\dfrac{\sqrt3}{2})^2}$$
                    
                     $${\text{use formula}}$$ $$\int\dfrac{dx}{a^2+x^2}=\dfrac{1}{a}tan^{-1}\dfrac{x}{a}$$
                     
                      $$\Rightarrow \dfrac{2}{\sqrt3}tan^{-1}[\dfrac{2}{\sqrt3}\times\dfrac{2x+1}{2}]+\dfrac{2}{\sqrt3}tan^{-1}[\dfrac{2}{\sqrt3}\times\dfrac{2y+1}{2}]+\dfrac{2}{\sqrt3} tan^{-1}C=0$$  
                
                      $${\text{[.... Where C is the integral constant]}}$$
                
                      $${\text{use formula}}$$  $$tan^{-1}A+tan^{-1}B$$
     
                      $$\Rightarrow\dfrac{2}{\sqrt3}tan^{-1}[\dfrac{\dfrac{2x+1}{3}+\dfrac{2y+1}{\sqrt3}}{1-(\dfrac {2x+1}{\sqrt3})(\dfrac{2y+1}{\sqrt3})}]=-\dfrac{2}{\sqrt3}tan^{-1} C$$
      
                      $$\Rightarrow \dfrac{2x+1+2y+1}{\sqrt 3}\times \dfrac{\sqrt3 \sqrt3}{3-4xy-2x-2y-1}=C$$
                
                      $$\Rightarrow \dfrac{\sqrt3(2x+2y+2)}{2-4xy-2x-2y}=C$$
                   
                      $$\therefore \sqrt3\times2(x+y+1)=c\times 2(1-2xy-x-y)$$

                      $$\therefore (x+y+1)=\dfrac{C}{\sqrt3}(1-x-y-2xy)$$
     
                      $${\text{ Compare this equation with the given equation gives,}}$$
                    
                      $$\therefore B=-1$$
                 
    $${\textbf{Hence option A is correct  }}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now