Self Studies

Differential Equations Test - 31

Result Self Studies

Differential Equations Test - 31
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The solution of $$\frac{dy}{dx}=|x|$$ is :
    Solution
    $$\cfrac{dy}{dx}=x$$  for $$x>0$$
    $$\cfrac{dy}{dx}=-x$$  for $$x\le 0$$
    For $$x>0,$$
    $$\cfrac{dy}{dx}=x$$
    $$\Rightarrow y=\cfrac{{x}^{2}}{2}+c$$ ......... [By integrating]
    For $$x\le 0$$
    $$\cfrac{dy}{dx}=-x$$
    $$y=\cfrac{{-x}^{2}}{2}+c$$ ........ [By integrating]
    $$\Rightarrow$$$$y=\cfrac { \left| x \right| x }{ 2 } +c$$
  • Question 2
    1 / -0

    Directions For Questions

    For the next three (03) items that follow :
    The general solution of the differential equation $$(x^2 + x + 1)dy + (y^2 + y + 1)dx =0$$ is 
    $$(x + y + 1) = A(1 + Bx + Cy + Dxy)$$ where B, C and D are constants and A is parameter.

    ...view full instructions

    What is C equal to ? 
    Solution
    $${\textbf{Step-1: Finding the value of D. }}$$
                     $${\text{Given,}}$$
                     $$\Rightarrow(x^2+x+1)dy+(y^2+y+1)dx=0$$
                     $$\Rightarrow(x^2+x+1)dy=-(y^2+y+1)dx$$
                     $$\Rightarrow\dfrac{dy}{y^2+y+1}=-\dfrac{dx}{x^2+x+1}$$
                     $${\text{Integrating both sides}}$$
                     $$\Rightarrow \int \dfrac{dy}{y^2+y+1}=-\int\dfrac{dx}{x^2+x+1}$$
                     $${\text{By using perfect square  method}}$$
                     $$\Rightarrow\int\dfrac{dy}{(y+\dfrac{1}{2})^2+(\dfrac{\sqrt3}{2})^2}=-\int\dfrac{dx}{(x+\dfrac{1}{2})^2+(\dfrac{\sqrt3}{2})^2}$$
                    
                     $$\Rightarrow \int\dfrac{dx}{(x+\dfrac{1}{2})^2+(\dfrac{\sqrt3}{2})^2}+\int\dfrac{dy}{(y+\dfrac{1}{2})^2+(\dfrac{\sqrt3}{2})^2}$$
                    
                     $${\text{use formula}}$$ $$\int\dfrac{dx}{a^2+x^2}=\dfrac{1}{a}tan^{-1}\dfrac{x}{a}$$
                     
                      $$\Rightarrow \dfrac{2}{\sqrt3}tan^{-1}[\dfrac{2}{\sqrt3}\times\dfrac{2x+1}{2}]+\dfrac{2}{\sqrt3}tan^{-1}[\dfrac{2}{\sqrt3}\times\dfrac{2y+1}{2}]+\dfrac{2}{\sqrt3} tan^{-1}C=0$$  
                
                      $${\text{[.... Where C is the integral constant]}}$$
                
                      $${\text{use formula}}$$  $$tan^{-1}A+tan^{-1}B$$
     
                      $$\Rightarrow\dfrac{2}{\sqrt3}tan^{-1}[\dfrac{\dfrac{2x+1}{3}+\dfrac{2y+1}{\sqrt3}}{1-(\dfrac {2x+1}{\sqrt3})(\dfrac{2y+1}{\sqrt3})}]=-\dfrac{2}{\sqrt3}tan^{-1} C$$
      
                      $$\Rightarrow \dfrac{2x+1+2y+1}{\sqrt 3}\times \dfrac{\sqrt3 \sqrt3}{3-4xy-2x-2y-1}=C$$
                
                      $$\Rightarrow \dfrac{\sqrt3(2x+2y+2)}{2-4xy-2x-2y}=C$$
                   
                      $$\therefore \sqrt3\times2(x+y+1)=c\times 2(1-2xy-x-y)$$

                      $$\therefore (x+y+1)=\dfrac{C}{\sqrt3}(1-x-y-2xy)$$
     
                      $${\text{ Compare this equation with the given equation gives,}}$$
                    
                      $$\therefore C=-1$$
                 
    $${\textbf{Hence option B is correct}}$$
  • Question 3
    1 / -0
    The solution of the differential equation $$\dfrac {dy}{dx} = \dfrac {yf'(x) - y^{2}}{f(x)}$$ is:
    Solution
    $$\dfrac {dy}{dx} = \dfrac {yf'(x) - y^{2}}{f(x)}$$
    $$\Rightarrow yf'(x) dx - f(x) dy = y^{2}dx$$
    $$\Rightarrow \dfrac {yf'(x) dx - f(x) dy}{y^{2}} = dx$$
    $$\Rightarrow d\left \{\dfrac {f(x)}{y}\right \} = dx$$
    On integration, we get
    $$\dfrac {f(x)}{y} = x + C$$
    $$\Rightarrow f(x) = y(x + C)$$
  • Question 4
    1 / -0
    The solution of $$\dfrac{dy}{dx}=\sqrt{1-x^2-y^2+x^2y^2}$$  is:
    where c is an arbitrary constant
    Solution
    Solution:
    Given, $$\cfrac{dy}{dx}=\sqrt{1-x^2-y^2+x^2y^2}$$
    $$=\sqrt{(1-x^2)-y^2(1-x^2)}$$
    $$=\sqrt{(1-x^2)(1-y^2)}$$
    $$=(\sqrt{1-x^2})(\sqrt{1-y^2})$$
    or, $$\cfrac{dy}{\sqrt{1-y^2}}=(\sqrt{1-x^2})dx$$
    On integrating both sides, we get
    $$\int$$$$\cfrac{dy}{\sqrt{1-y^2}}=\int(\sqrt{1-x^2})dx$$
    or, $$\sin^{-1}y=\cfrac12[x\sqrt{1-x^2}+\sin^{-1}x]+A$$
    or, $$2\sin^{-1}y=x\sqrt{1-x^2}+\sin^{-1}x+C$$
    Hence, C is the correct option.
  • Question 5
    1 / -0
    The solution of the differential equation $$\dfrac {dy}{dx} = \tan \left (\dfrac {y}{x}\right ) + \dfrac {y}{x}$$ is:
    Solution
    $$\dfrac {dy}{dx} = \tan \left (\dfrac {y}{x}\right ) + \left (\dfrac {y}{x}\right )$$ ..... $$(i)$$
    Take, $$\dfrac {y}{x} = v$$
    $$\implies y = vx$$
    $$\implies \dfrac {dy}{dx} = v + x\dfrac {dv}{dx}$$
    $$\therefore$$ The given equation $$(i)$$ becomes
    $$v + x\dfrac {dv}{dx} = \tan v + v$$
    $$\implies \dfrac {1}{\tan v}dv = \dfrac {1}{x}dx$$
    $$\implies \displaystyle \int \cot v\ dv = \int \dfrac {1}{x}dx$$
    $$\implies \log |\sin v| = \log x + \log c=\log|xc|$$
    $$\implies \sin v = xc$$
    $$\therefore \sin \left (\dfrac {y}{x}\right ) = xc$$
  • Question 6
    1 / -0

    Directions For Questions

    For the next three (03) items that follow :
    The general solution of the differential equation $$(x^2 + x + 1)dy + (y^2 + y + 1)dx =0$$ is 
    $$(x + y + 1) = A(1 + Bx + Cy + Dxy)$$ where B, C and D are constants and A is parameter.

    ...view full instructions

    What is D equal to ?
    Solution
    $${\textbf{Step-1: Finding the value of D. }}$$
                     $${\text{Given,}}$$
                     $$\Rightarrow(x^2+x+1)dy+(y^2+y+1)dx=0$$
                     $$\Rightarrow(x^2+x+1)dy=-(y^2+y+1)dx$$
                     $$\Rightarrow\dfrac{dy}{y^2+y+1}=-\dfrac{dx}{x^2+x+1}$$
                     $${\text{Integrating both sides}}$$
                     $$\Rightarrow \int \dfrac{dy}{y^2+y+1}=-\int\dfrac{dx}{x^2+x+1}$$
                     $${\text{By using perfect square  method}}$$
                     $$\Rightarrow\int\dfrac{dy}{(y+\dfrac{1}{2})^2+(\dfrac{\sqrt3}{2})^2}=-\int\dfrac{dx}{(x+\dfrac{1}{2})^2+(\dfrac{\sqrt3}{2})^2}$$
                    
                     $$\Rightarrow \int\dfrac{dx}{(x+\dfrac{1}{2})^2+(\dfrac{\sqrt3}{2})^2}+\int\dfrac{dy}{(y+\dfrac{1}{2})^2+(\dfrac{\sqrt3}{2})^2}$$
                    
                     $${\text{use formula}}$$ $$\int\dfrac{dx}{a^2+x^2}=\dfrac{1}{a}tan^{-1}\dfrac{x}{a}$$
                     
                      $$\Rightarrow \dfrac{2}{\sqrt3}tan^{-1}[\dfrac{2}{\sqrt3}\times\dfrac{2x+1}{2}]+\dfrac{2}{\sqrt3}tan^{-1}[\dfrac{2}{\sqrt3}\times\dfrac{2y+1}{2}]+\dfrac{2}{\sqrt3} tan^{-1}C=0$$  
                
                      $${\text{[.... Where C is the integral constant]}}$$
                
                      $${\text{use formula}}$$  $$tan^{-1}A+tan^{-1}B$$
     
                      $$\Rightarrow\dfrac{2}{\sqrt3}tan^{-1}[\dfrac{\dfrac{2x+1}{3}+\dfrac{2y+1}{\sqrt3}}{1-(\dfrac {2x+1}{\sqrt3})(\dfrac{2y+1}{\sqrt3})}]=-\dfrac{2}{\sqrt3}tan^{-1} C$$
      
                      $$\Rightarrow \dfrac{2x+1+2y+1}{\sqrt 3}\times \dfrac{\sqrt3 \sqrt3}{3-4xy-2x-2y-1}=C$$
                
                      $$\Rightarrow \dfrac{\sqrt3(2x+2y+2)}{2-4xy-2x-2y}=C$$
                   
                      $$\therefore \sqrt3\times2(x+y+1)=c\times 2(1-2xy-x-y)$$

                      $$\therefore (x+y+1)=\dfrac{C}{\sqrt3}(1-x-y-2xy)$$
     
                      $${\text{ Compare this equation with the given equation gives,}}$$
                    
                      $$\therefore D=-2$$
                 
    $${\textbf{Hence option C is correct }}$$
  • Question 7
    1 / -0
    What is the number of arbitrary constants in the particular solution of differential equation of third order ? 
    Solution
    $$\textbf{Step 1: Defining}$$
                    $$\text{We know that a particular solution of a differential equation contains no constants}$$
                    $$\text{This is applicable for all order of differential equations}$$
    $$\textbf{Hence, Number of arbitrary constants in the particular solution of a differential equation }$$
    $$\textbf{of third order is 0}$$
  • Question 8
    1 / -0
    What is the equation of a curve passing through (0, 1) and whose differential equation is given by dy = y tan x dx ? 
    Solution
    Given : $$dy=y \ \tan x \ dx$$
    $$\cfrac{dy}{y}=\tan x \ dx$$

    On integrating both sides, we get
    $$\Rightarrow \ln y \ = \ -\ln \cos x \ +c$$

    The equation satisfies $$(0,1)$$
    $$\Rightarrow 0=0+c$$
    $$\Rightarrow c=0$$
    We get
    $$y=\cfrac{1}{\cos x}$$
    $$y=\sec x$$

  • Question 9
    1 / -0
    The solution of the differential equation $$\dfrac {dy}{dx} = (x + y)^{2}$$ is:
    Solution
    Given DE is $$\dfrac {dy}{dx} = (x + y)^{2}$$
    Let's substitute $$t=x+y$$
    $$\Rightarrow 1+\cfrac{dy}{dx}=\cfrac{dt}{dx}$$
    $$\Rightarrow \cfrac{dt}{dx}-1=\dfrac{dy}{dx}$$
    $$\Rightarrow \cfrac{dt}{dx}-1=t^2$$
    $$\Rightarrow \cfrac{dt}{dx}=t^2+1$$
    $$\Rightarrow \cfrac{dt}{t^2+1}=dx$$
    On integrating both sides we get
    $$\displaystyle \int \cfrac{dt}{t^2+1}=\int dx$$
    $$\Rightarrow \tan^{-1}{t}=x+c$$
    $$\Rightarrow \tan^{-1}{(x+y)}=x+c$$
  • Question 10
    1 / -0
    The solution of the differential equation $$(1+{ x }^{ 2 }{ y }^{ 2 })ydx+({ x }^{ 2 }{ y }^{ 2 }-1)xdy=0$$ is
    Solution
    Given differential equation is $$(1+{ x }^{ 2 }{ y }^{ 2 })ydx+({ x }^{ 2 }{ y }^{ 2 }-1)xdy=0$$ .... $$(i)$$
    $$\implies (1+{ x }^{ 2 }{ y }^{ 2 })ydx=-({ x }^{ 2 }{ y }^{ 2 }-1)xdy$$

    $$\implies \dfrac{(1+{ x }^{ 2 }{ y }^{ 2 })}{x}dx=\dfrac{(1-{ x }^{ 2 }{ y }^{ 2 })}{y}dy$$
    $$\implies \left(\dfrac{1}{x}+x y^{2}\right)\ dx=\left(\dfrac{1}{y}-{x}^{2} y\right)\ dy$$
    Integrating both sides
    $$\implies \displaystyle \int \left(\dfrac{1}{x}+x y^{2}\right)\ dx=\int \left(\dfrac{1}{y}-{x}^{2} y\right)\ dy$$
    $$\Rightarrow \displaystyle \int\left({\dfrac{dx}x-\dfrac{dy}y}\right)+\displaystyle \int\left({xy^2dx+x^2ydy}\right)=0$$
    $$\Rightarrow \displaystyle \int d\left(\log{\dfrac xy}\right)+\displaystyle\int\dfrac12d(x^2y^2)+C=0$$
    $$\therefore \log\dfrac xy+\dfrac12 x^2y^2+C=0$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now