Self Studies

Differential Equations Test - 33

Result Self Studies

Differential Equations Test - 33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The solution of the differential equation $$\sec^{2} x \cdot \tan y \,dx + \sec^{2} y \cdot \tan x\ dy = 0$$ is 
    Solution
    Given, $$\sec^{2} x \cdot \tan y dx+\sec^{2} y \cdot \tan x dy =0$$

    On separating the varaibales, we get

    $$\Rightarrow \sec^{2} x\cdot \tan y dx = - \sec^{2} y\cdot \tan \, x dy$$

    $$\Rightarrow \dfrac{\sec^2x}{\tan \, x}dx=- \dfrac{\sec^{2}y}{\tan y}dy$$

    On integration both the sides, we get

    $$\displaystyle \int \frac{\sec^{2}x}{\tan x}dx= -\int \frac{\sec^{2}y}{\tan y}dy$$

    Let $$\tan x=u \Rightarrow \sec^{2}x=\dfrac{du}{dx}$$

    $$\Rightarrow dx =\dfrac{du}{\sec^{2}x}$$ and $$\tan \, y=v$$

    $$\Rightarrow \sec^{2}y=\dfrac{dv}{dy}$$

    $$\Rightarrow dy =\dfrac{dv}{\sec^2 y}$$

    $$\displaystyle \therefore \int \frac{\sec^{2} x}{u}\cdot \frac{du}{\sec^{2} x}=-\int \frac{\sec^2y}{v}\cdot \frac{dv}{\sec^2y}$$

    $$\Rightarrow \displaystyle \int \dfrac{du}{u}=\int \dfrac{dv}{v}$$

    $$\Rightarrow \log|u|=-\log |v|+\log|C|$$

    $$\Rightarrow \log|\tan \, x|=-\log |\tan y| + \log |C|$$

    $$\Rightarrow \log|\tan x\cdot \tan y| = \log |C|$$

    $$(\because \log m + \log n=\log mn)$$

    $$ (\because \log m =\log n\Rightarrow m =n)$$

    $$\Rightarrow \tan x\cdot \tan y = C$$
  • Question 2
    1 / -0
    The general solution of the differential equation $$xdy-ydx={y}^{2}dx$$ is
    Solution
    We have $$xdy-ydx={ y }^{ 2 }dx$$
    $$\Rightarrow x\cfrac { dy }{ dx } -y={ y }^{ 2 }$$
    $$\Rightarrow \cfrac { x\cfrac { dy }{ dx } -y }{ { y }^{ 2 } } =1\quad $$
    $$\Rightarrow -\left( \cfrac { y-x\cfrac { dy }{ dx }  }{ { y }^{ 2 } }  \right) =1$$
    $$\Rightarrow -\cfrac { d }{ dx } \cfrac { x }{ y } =1$$
    $$\Rightarrow \cfrac { x }{ y } =-x+C$$
    $$\Rightarrow y=\cfrac { x }{ C-x } $$
  • Question 3
    1 / -0
    Solution of $$\cfrac { dx }{ dy } +mx=0$$, where $$m< 0$$ is:
    Solution
    Given $$\dfrac{dx}{dy}+mx=0, m<0$$

    $$\Rightarrow \dfrac{dx}{dy}=-mx$$

    $$\Rightarrow \dfrac{dx}{x}=-m\:dy$$

    Integrating both sides we get

    $$\Rightarrow ln\: x=-my+c$$

    Raising to power $$e$$ on both sides we get,

    $$x=e^{-my+c}$$

    $$\Rightarrow x=e^{-my} \cdot e^c$$

    $$\Rightarrow x=Ce^{-my}$$
  • Question 4
    1 / -0
    The general solution of the differential equation $$\left( x+y \right) dx+xdy=0$$ is
    Solution
    Given differential equation is

    $$\left( x+y \right) dx+xdy=0$$

    $$\Rightarrow xdx=-\left( x+y \right) dy$$

    $$\Rightarrow \dfrac { dy }{ dx } =\dfrac { -\left( x+y \right)  }{ x }$$

    It is a homogeneous differential equation.

    So, putting $$y=vx\Rightarrow \dfrac { dy }{ dx } =v+x\dfrac { dv }{ dx }$$, we get

    $$v+x\dfrac { dv }{ dx } =-\dfrac { x+vx }{ x } =-\dfrac { 1+v }{ 1 } $$

    $$\Rightarrow x\dfrac { dv }{ dx } =-1-2v$$

    $$\Rightarrow \displaystyle\int { \dfrac { dv }{ 1+2v }  } =-\displaystyle\int { \dfrac { dx }{ x }  } $$

    $$\Rightarrow \log { \left( 1+2v \right)  } =-\log { x } +\log { { C }_{ 1 } }$$

    $$\Rightarrow \log { \left( 1+\dfrac { 2y }{ x }  \right)  } =2\log { \dfrac { { C }_{ 1 } }{ x }  } $$

    $$\Rightarrow \dfrac { x+2y }{ x } ={ \left( \dfrac { { C }_{ 1 } }{ x }  \right)  }^{ 2 }$$

    $$\Rightarrow { x }^{ 2 }+2xy=C$$           (where, $$C={ C }_{ 1 }^{ 2 }$$)
  • Question 5
    1 / -0
    The solution of the differential equation $$\left( { x }^{ 2 }-y{ x }^{ 2 } \right) \dfrac { dy }{ dx } +{ y }^{ 2 }+x{ y }^{ 2 }=0$$ is
    Solution
    Given differential equation is
    $$\left( { x }^{ 2 }-y{ x }^{ 2 } \right) \dfrac { dy }{ dx } +{ y }^{ 2 }+x{ y }^{ 2 }=0$$
    $$\Rightarrow \dfrac { 1-y }{ { y }^{ 2 } } dy+\dfrac { 1+x }{ { x }^{ 2 } } dx=0$$
    $$\Rightarrow \left( \dfrac { 1 }{ { y }^{ 2 } } -\dfrac { 1 }{ y }  \right) dy+\left( \dfrac { 1 }{ { x }^{ 2 } } +\dfrac { 1 }{ x }  \right) dx=0$$
    On integrating both sides, we get the required solution
    $$\dfrac { -2 }{ y } -\log { y } -\dfrac { 2 }{ x } +\log { x } =C$$
    $$\Rightarrow \log { \left( \dfrac { x }{ y }  \right)  } =\dfrac { 1 }{ x } +\dfrac { 1 }{ y } +C$$
  • Question 6
    1 / -0
    The general solution of the differential equation $$\cfrac { dy }{ dx } +\sin { \cfrac { x+y }{ 2 }  } =\sin { \cfrac { x-y }{ 2 }  } $$ is
    Solution
    We have
    $$\cfrac { dy }{ dx } +\sin { \cfrac { x+y }{ 2 }  } =\sin { \cfrac { x-y }{ 2 }  } $$
    $$\Rightarrow \cfrac { dy }{ dx } =\sin { \cfrac { x-y }{ 2 }  } -\sin { \cfrac { \\ x+y }{ 2 }  } $$
    $$\Rightarrow \cfrac { dy }{ dx } =2\cos { \cfrac { \left( \cfrac { x-y }{ 2 } +\cfrac { x+y }{ 2 }  \right)  }{ 2 }  } \sin { \cfrac { \left( \cfrac { x-y }{ 2 } -\cfrac { x+y }{ 2 }  \right)  }{ 2 }  }$$ ..... $$\left[ \because \sin { C } -\sin { D } =2\cos { \cfrac { C+D }{ 2 }  } .\sin { \cfrac { C-D }{ 2 }  }  \right] $$
    $$\Rightarrow \cfrac { dy }{ dx } =2\cos { \cfrac { x }{ 2 }  } .\sin { \cfrac { -y }{ 2 }  } $$
    $$\Rightarrow \cfrac { dy }{ dx } =-2\cos { \left( \cfrac { x }{ 2 }  \right)  } .\sin { \left( \cfrac { y }{ 2 }  \right)  } $$
    $$\Rightarrow \cfrac { dy }{ \sin { \left( \cfrac { y }{ 2 }  \right)  }  } =-2\cos { \left( \cfrac { x }{ 2 }  \right)  } $$
    On integrating both sides, we get
    $$\Rightarrow \displaystyle \int \text{cosec} { \left( \cfrac { y }{ 2 }  \right)  } dy=-2\int _{  }^{  }{ \cos { \left( \cfrac { x }{ 2 }  \right)  } dx } $$
    $$\Rightarrow 2\log _{ e }{ \left| \tan { \cfrac { y }{ 2 }  }  \right|  } =-4\sin { \left( \cfrac { x }{ 2 }  \right)  } +C$$
    $$\Rightarrow \log _{ e }{ \left| \tan { \cfrac { y }{ 2 }  }  \right|  } =-2\sin { \left( \cfrac { x }{ 2 }  \right)  } +C$$
  • Question 7
    1 / -0
    The solution of $$x \log x \displaystyle\frac{dy}{dx}+y=1$$ is?
    Solution
    $$\left( x\log { x }  \right) dy=\left( 1-y \right) dx$$
    $$\cfrac { dy }{ 1-y } =\cfrac { dx }{ x\log { x }  } $$
    Integrating both sides
    $$\int { \cfrac { dy }{ 1-y }  } =\int { \cfrac { dx }{ x\log { x }  }  } $$
    Let $$\log { x } =t,dt=\cfrac { 1 }{ x } dx$$
    $$-\ln { \left( 1-y \right)  } =\int { \cfrac { dt }{ t }  } =\ln { t } +\ln { c }(constant) $$
    $$\ln { \left( \cfrac { 1 }{ 1-y }  \right)  } =\ln { \left( tc \right)  } $$
    $$tc=\cfrac { 1 }{ 1-y } $$
    $$\log { x } =\cfrac { 1 }{ c\left( 1-y \right)  } =\cfrac { k }{ y-1 } $$
    where $$k=-\cfrac { 1 }{ c } $$
  • Question 8
    1 / -0
    Solution of the differential equation $$(x^{2} + y^{3}) (2x^{2}dx + 3ydy) = 12x\ dx + 18y^{2}dy$$ is
    Solution
    $$LHS\longrightarrow (x^{ 2 }+y^{ 3 })(2{ x }^{ 2 }dx+3ydy)\\ =2{ x }^{ 4 }dx+3{ x }^{ 2 }ydy+2{ x }^{ 2 }y^{ 3 }dx+3{ y }^{ 4 }dy\\ \Rightarrow 2{ x }^{ 4 }dx+3{ x }^{ 2 }ydy+2{ x }^{ 2 }y^{ 3 }dx+3{ y }^{ 4 }dy=12xdx+18{ y }^{ 2 }dy\\ (or)\; the\; given\; question\; can\; be\; written\; as\\ (2{ x }^{ 2 }dx+3ydy)=\cfrac { 6(2{ x }^{  }dx+3y^2dy) }{ x^{ 2 }+y^{ 3 } } \\ integrating\; \Rightarrow \cfrac { 2 }{ 3 } { x }^{ 3 }+\cfrac { 3 }{ 2 } { y }^{ 2 }=6ln(x^{ 2}+y^{ 3 })+C\\ $$
  • Question 9
    1 / -0
    The solution of $$y' = e^{x - y} + x^{2} e^{-y}$$ is
    Solution
    $$\dfrac{dy}{dx} =\dfrac{e^x}{e^y}+\dfrac{x^2}{e^y}$$

    $$e^y dy =(e^x +x^2)dx$$

    integrating both side,

    $$ e^y = e^x +\dfrac{x^3}{3} +c$$

    $$3(e^y -e^x) -x^3 = c$$
  • Question 10
    1 / -0
    If $$y=\sqrt{(a-x)(x-b)}-(a-b)\tan^{-1}\sqrt{\displaystyle\frac{a-x}{x-b}}(a > b)$$ then $$\displaystyle\frac{dy}{dx}=$$.
    Solution
    Given, $$y=\sqrt {(a-x) (x-b)}-(a-b) \tan^{-1} \sqrt {\dfrac {a-x}{x-b}}$$Let $$u=(a-x) (x-b), \surd =\sqrt {\dfrac {a-x}{x-b}}$$$$\Rightarrow \ y=\sqrt u - (a-b)\tan^{-1}v$$Now, differentiating wrt $$x$$$$\Rightarrow \ \dfrac {dy}{dx} =\dfrac {d}{dx}(\sqrt u)- (a-b)\dfrac {d}{dx} \tan^{-1}v$$$$=\dfrac {d(\sqrt u)}{du}.\dfrac {du}{dx}-(a-b) \dfrac {d\tan^{-1}v}{dv}.\dfrac {dv}{dx}$$ [chain rule]$$=\dfrac {1}{2\sqrt u}. \dfrac {du}{dx} -(a-b) \dfrac {1}{1+v^2}.\dfrac {dv}{dx}......(1)$$$$\dfrac {du}{dx} =\dfrac {d}{dx} (a-x) (x-b) =\dfrac {d}{dx} (ax-av-x^2 +bx)=a-2x+b$$$$\dfrac {dv}{dx}=\dfrac {d}{dx} \left (\sqrt {\dfrac {a-x}{x-b}}\right)=\dfrac {1}{2\sqrt {\dfrac {a-x}{x-b}}}\times \dfrac {(x-b)(-1)-(a-x)(1)}{(x-b)^2}$$ [quotent rule]$$=\dfrac {\sqrt {x-b}}{2\sqrt {a-x}}\times \dfrac {(b-a)}{(x-b)^2}$$substituting in $$(1)$$$$\dfrac {dy}{dx}=\dfrac {1}{2\sqrt {(a-x)(x-b)}}\times (a-2x+b)-(a-b)\dfrac {1}{1+\dfrac {a-x}{x-b}}\times \dfrac {\sqrt {x-b}}{\sqrt {b-x}}\times \dfrac {(b-a)}{(x-b)^2}$$$$=\dfrac {a-2x+b}{2\sqrt {(a-x)(x-b)}}-\dfrac {(ab)(xb)}{(a-b)}\times \dfrac {\sqrt {x-b}}{2\sqrt {a-x}}\dfrac {(b-a)}{(x-b)^2}$$$$=\dfrac {a-2x+b+a-b}{2\sqrt {(a-x)(x-b)}}$$$$=\dfrac {2(a-x)}{2\sqrt {(a-x)(x-b)}}$$$$\Rightarrow \boxed {\dfrac {dy}{dx}=\sqrt {\dfrac {a-x}{x-b}}}$$option $$A$$ is corect
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now