Self Studies

Differential Equations Test - 34

Result Self Studies

Differential Equations Test - 34
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The solution of equation $$\dfrac{dy}{dx}=\dfrac{ax+b}{cy+d}$$ represents : 
    Solution
    Given Differential equation is $$\cfrac { dy }{ dx } =\cfrac { ax+b }{ cy+d } $$,

    Separating the variables and integrating gives,

    $$\int { (cy+d)dy } =\int { (ax+b)dx } $$,

    $$\Longrightarrow \cfrac { c{ y }^{ 2 } }{ 2 } +dy=\cfrac { a{ x }^{ 2 } }{ 2 } +bx+K$$,

    Where $$K$$ is the integration constant,

    If $$a=c=0$$ and $$b,d\neq 0$$, the equation becomes,

    $$dy-bx=K$$ which representss a straight line.
  • Question 2
    1 / -0
    The solution of the differential equation $$3xy'-3y+{ \left( { x }^{ 2 }-{ y }^{ 2 } \right)  }^{ 1/2 }=0$$, satisfying the condition $$y(1)=1$$ is
    Solution
    The differential equation is
    $$3x\dfrac{dy}{dx}-3y+(x^{2}-(y)^2)^{\frac{1}{2}}=0$$
    $$3xdy-3ydx+(x^{2}-(y)^2)^{\frac{1}{2}}dx=0$$

    Let $$y=vx$$
    $$\implies dy=vdx+xdv$$
    Substituting these values in the differential equation, we get
    $$3x(vdx+xdv)-3vxdx+(x^{2}-(vx)^2)^{\frac{1}{2}}dx=0$$
    $$3x(vdx+xdv)-3vxdx+x(1-v^2)^{\frac{1}{2}}dx=0$$
    $$3x^{2}dv+x(1-v^2)^{\frac{1}{2}}dx=0$$
    $$3xdv+(1-v^2)^{\frac{1}{2}}dx=0$$

    $$-\dfrac{3dv}{(1-v^2)^{\frac{1}{2}}}=\dfrac{dx}{x}$$

    Integrating the above equation, we get

    $$3\int -\dfrac{dv}{(1-v^2)^{\frac{1}{2}}}=\int \dfrac{dx}{x}$$

    $$3cos^{-1}v=ln|x| +c$$

    $$3cos^{-1}(\dfrac{y}{x})=ln|x| +c$$
    Using the goundary condition y(1)=1, we get
    $$3cos^{-1}1=ln|1|+c$$
    $$c=0$$
    $$\implies3cos^{-1}\dfrac{y}{x}=ln|x|$$ is the solution of the differential equation.

    Hence, the answer is option (A).

  • Question 3
    1 / -0
    The solution of differential equation $$x \dfrac {dy}{dx} + y=y^2$$ is:
    Solution
    $$x\dfrac{dy}{dx}+y=y^2$$

    $$\therefore \dfrac{dy}{y^2-y}=\dfrac{dx}{x}$$

    $$\therefore \dfrac{dy}{y-1}-\dfrac{dy}{y}=\dfrac{dx}{x}$$

    $$\therefore \ln(y-1)-\ln y=\ln x+C^{'}$$

    $$\therefore \ln\left(\dfrac{y-1}{yx}\right)=C^{'}$$

    $$\therefore \dfrac{y-1}{yx}=e^{C^{'}}$$

    $$\therefore \dfrac{y-1}{yx}=c$$ ........ $$[e^{C^{'}}=c]$$

    $$\therefore y=1+cxy$$
  • Question 4
    1 / -0
    The solution of the differential equation $$\left( x+3{ y }^{ 2 } \right) \dfrac { dy }{ dx } =y,\ y>0$$ is
    Solution
    Given,

    $$(x + 3y^2) \dfrac{dy}{dx} = y , y > 0$$

    we can rewrite it as,

    $$x + 3y^2 = y \dfrac{dx}{dy}$$

    $$\Rightarrow \dfrac{dx}{dy} = \dfrac{x}{y} + 3y$$

    $$\Rightarrow \dfrac{dx}{dy} - \dfrac{1}{y} x = 3y$$

    As it is a linear equation of the form

    $$\dfrac{dx}{dy} + px = Q$$

    Here, 
    $$P = \dfrac{-1}{y} , Q = 3y$$

    $$I. F = e^{\displaystyle\int p dy} = e^{\displaystyle-\int \dfrac{1}{y} dy}$$

    $$= e^{-\ln \ y} = e^{\ln \ y^{-1}}$$

    $$= y^{-1} = \dfrac{1}{y}$$

    $$\therefore \dfrac{1}{y} . x = \displaystyle \int 3y \times \dfrac{1}{y} dy + c$$

    $$\Rightarrow \dfrac{x}{y} = 3 \displaystyle \int dy + c$$

    $$= \dfrac{x}{y} = 3y + c$$
  • Question 5
    1 / -0
    The solution of the differential equation $$y'=\cfrac { 1 }{ { e }^{ -y }-x } $$, is
    Solution
    $$y^{'}=\dfrac{1}{e^{-y}-x}$$

    $$y^{'}e^{-y}-y^{'}x=1$$

    $$y^{'}e^{-y}=y^{'}x+1$$

    $$y^{'}=e^{y}y^{'}x+e^{y}$$

    $$\dfrac{dy}{dx}=e^{y}\dfrac{dy}{dx}x+e^{y}$$

    $$\dfrac{dy}{dx}=\dfrac{d(xe^{y})}{dx}$$

    Integrating the above equation, we get
    $$y=xe^{y}-c$$
    $$xe^{y}=y+c$$
    $$x=e^{-y}(y+c)$$

    Hence, the answer is  option (A).
  • Question 6
    1 / -0
    the general solution of differential equation $$x^4 \, \frac{dy}{dx} \, + \, x^3 y \, + cosec \, xy \, =0$$,   is 
    Solution
    $$x^4dy \, + \, x^3 \, ydx \, + \, cosec (xy) \, dx \, = \, 0$$
    $$x^3(x  \, dx  \, + \,y  \, dx  )+ \, + \, cosec (xy) \, dx \, = \, 0$$
    $$\therefore \int \dfrac{d (xy)}{cosec (xy)} \, + \,\int \dfrac{dx}{x^3} \, = \, 0$$
    $$-cos  \, xy  \, + \, \dfrac{x^{-3+1}}{-3 + 1} \, = \, C$$  
    $$\therefore \,2\, cos\,(xy)\,+\, \dfrac{1}{x^2 }\,=\,C$$

  • Question 7
    1 / -0
    The differential equation $$\dfrac{dy}{dx} = e^x.e^y$$ has solution ____________
    Solution
    $$\dfrac{dy}{dx}=e^x.e^y$$
    $$\implies e^{-y}dy=e^xdx$$
    Integrating both sides-
    $$\int e^{-y}dy=\int e^xdx$$
    $$-e^{-y}+C=e^x$$
    $$\implies e^x+e^{-y}=C$$
  • Question 8
    1 / -0
    The particular solution of differential equation $$\cfrac { dy }{ dx } =-4x{ y }^{ 2 },y(0)=1$$ is ______
    Solution
    $$y={ \left( 2{ x }^{ 2 }+1 \right)  }^{ -1 }\quad $$
    $$\cfrac { dy }{ dx } =-4x{ y }^{ 2 }$$
    $$\therefore \cfrac { dy }{ { y }^{ 2 } } =-4xdx$$
    $$\therefore \int { { y }^{ -2 } } dy=-4\int { x } dx+c\quad $$
    $$\therefore \cfrac { { y }^{ -1 } }{ -1 } =-4\left( \cfrac { { x }^{ 2 } }{ 2 }  \right) +c$$
    $$\therefore \cfrac { -1 }{ y } =-2{ x }^{ 2 }+c$$
    Take $$x=0$$ and $$y=1$$
    $$ \therefore -1=-2(0)+c$$
    $$\therefore c=-1$$
    $$\therefore \cfrac { -1 }{ y } =-2{ x }^{ 2 }-1$$
    $$\therefore \cfrac { 1 }{ y } =1+2{ x }^{ 2 }$$
    $$\therefore y={ \left( 1+2{ x }^{ 2 } \right)  }^{ -1 }$$
  • Question 9
    1 / -0
    The order of the differential equation whose general solution is $$y \, = \, c, \, cos \, 2x \, + \, c_2 \, cos^2x \, + \, c_3 \, sin^2x \, + \, c_4$$
    Solution
    $$y=c_1\cos2x+c_2\cos^2x+c_3sin^2x+c_4$$
      $$=c_1(2\cos^2x-1)+$$
       $$=(2c_1+c_2)\cos^2x+c_3\sin^2x +(c_4-c_1)$$
        $$=t_1\cos^2x+c_3\sin^2x+t_2$$
     So order will be $$3$$ Because of three unknown present
  • Question 10
    1 / -0
    The solution of the differential equation $$2x \dfrac{dy}{dx} = y; y(1) = 2$$ represents $$=$$ ____.
    Solution
    $$2x\dfrac{dy}{dx}=y$$
    $$\implies 2\dfrac{dy}{y}=\dfrac{dx}{x}$$
    Integrating both sides-
    $$2\log y=\log x+c$$
    For $$y(1)=2-$$
    $$2\log 2=\log 1+c\implies c=2\log 2$$
    Hence,
    $$2\log y=\log x+2\log 2$$
    $$\implies \log y^2=\log {4x}$$
    $$\implies y^2=4x$$
    This is the equation of parabola.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now