Self Studies

Differential Equations Test - 35

Result Self Studies

Differential Equations Test - 35
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    What is the degree of the differential eqaution : $$\dfrac{d^3y}{dx^3}-6(\dfrac{dy}{dx})^2-4y=0$$
    Solution
    Given the differential equations is
    $$\dfrac{d^3y}{dx^3}-6(\dfrac{dy}{dx})^2-4y=0$$.
    The highest order term involved in the equation is $$\dfrac{d^3y}{dx^3}$$.
    And the degree of the highest ordered term is $$1$$, so degree of the differential equations is $$1$$.
  • Question 2
    1 / -0
    What are the order and degree, respectively, of the differential equation
    $${ \left( \cfrac { { d }^{ 3 }y }{ d{ x }^{ 3 } }  \right)  }^{ 2 }={ y }^{ 4 }+{ \left( \cfrac { dy }{ dx }  \right)  }^{ 5 }\quad $$?
    Solution
    Order is the highest derivative of the dependent variable with respect to the independent variable and degree is the highest power to which the highest order derivative in the differential equation is raised.

    so, $$Order=3$$ and $$Degree=2$$

    Therefore, Answer is $$C$$ 
  • Question 3
    1 / -0
    Solution of the differential equation
    $$\tan { y } .\sec ^{ 2 }{ x } dx+\tan { x } .\sec ^{ 2 }{ y } dy=0$$ is
    Solution
    $$\tan { y } .\sec ^{ 2 }{ x } dx+\tan { x } .\sec ^{ 2 }{ y } dy=0$$
    $$\Rightarrow \tan { y } .\sec ^{ 2 }{ x } dx=-\tan { x } .\sec ^{ 2 }{ y } dy$$
    $$\Rightarrow \cfrac { \sec ^{ 2 }{ x } dx }{ \tan { x }  } =-\cfrac { \sec ^{ 2 }{ y } dx }{ \tan { y }  } $$
    Integrating, $$\int { \cfrac { \sec ^{ 2 }{ x } dx }{ \tan { x }  }  } =-\int { \cfrac { \sec ^{ 2 }{ y } dx }{ \tan { y }  }  } $$
    $$\Rightarrow \int { \cfrac { d\left( \tan { x }  \right)  }{ \tan { x }  }  } =-\int { \cfrac { d\left( \tan { y }  \right)  }{ \tan { y }  }  } $$
    $$\Rightarrow \ln { \left| \tan { x }  \right|  } =-\ln { \left| \tan { x }  \right|  } +c$$
    $$\Rightarrow \ln { \left| \tan { x }  \right|  } +\ln { \left| \tan { x }  \right|  } =c$$
    $$\Rightarrow \ln { \left| \tan { x } .\tan { y }  \right|  } =c$$
    $$\Rightarrow \tan { x } \tan { y } ={ e }^{ c }$$
    $$\Rightarrow \tan { x } \tan { y } =k$$ (where $${ e }^{ c }=k$$)
  • Question 4
    1 / -0
    The order of differential equation corresponding to $$y={ c }_{ 1 }\cos { 2x } +{ c }_{ 2 }\cos ^{ 2 }{ x } +{ c }_{ 3 }\sin ^{ 2 }{ x } +{ c }_{ 4 }$$
    Solution
    $$y={ c }_{ 1 }\cos { 2x } +\cfrac { { c }_{ 2 } }{ 2 } \left( 1+\cos { 2x }  \right) +\cfrac { { c }_{ 3 } }{ 2 } \left( 1-\cos { 2x }  \right) +{ c }_{ 4 }\quad =\left( \cfrac { { c }_{ 2 } }{ 2 } +\cfrac { { c }_{ 3 } }{ 2 } +{ c }_{ 4 } \right) +\left( { c }_{ 1 }+\cfrac { { c }_{ 2 } }{ 2 } -\cfrac { { c }_{ 3 } }{ 2 }  \right) \cos { 2x } =A+B\cos { 2x } $$
    Equation has only two independent parameters
    Hence, order is $$2$$
  • Question 5
    1 / -0
    The solution of $$\sec ^{2}y\dfrac {dy}{dx}+2x\tan y=x^{3}$$ is
    Solution
    $$\begin{array}{l} { \sec ^{ 2 }  }y\frac { { dy } }{ { dx } } +2x\tan  y={ x^{ 3 } }\to (i) \\ let\, \tan  y=t\to (ii) \\ different\, \, equation(ii)\, \, w.\, r.\, t\, \ x \\ we\, \, get \\ { \sec ^{ 2 }  }y\frac { { dy } }{ { dx } } =\frac { { dt } }{ { dx } }  \\ now\, \, equation\, (i)\, \, becomes \\ \frac { { dt } }{ { dx } } +2xt+{ x^{ 3 } } \end{array}$$
    This is linear equation
    $$\begin{array}{l} I.F=\int _{ e }{ pdx=\int _{ e }{ 2xdx }  } ={ e^{ { x^{ 2 } } } } \\ tx{ e^{ { x^{ 2 } } } }=\int { { x^{ 3 } }\cdot { e^{ { x^{ 2 } } } }dx+c }  \\ t{ e^{ { x^{ 2 } } } }=\int { x\cdot { x^{ 2 } }\cdot { e^{ { x^{ 2 } } } }dx+c } \, \, \, \, \, \, \, \, \left[ \begin{array}{l} put\, { x^{ 2 } }=u \\ difference\, \, we\, \, get \\ 2x\, dx=du \end{array} \right]  \\ t{ e^{ { x^{ 2 } } } }=\frac { 1 }{ 2 } \int { x\cdot { e^{ { x^{ 2 } } } }dx+c } \, \, \, \, \, \, \, \, \left[ { by\, parts\, \, { { int } }eger } \right]  \\ t{ e^{ { x^{ 2 } } } }=\frac { 1 }{ 2 } \left[ { x\cdot { e^{ x } }-\int { 1\cdot { e^{ x } }dx }  } \right]  \\ t{ e^{ { x^{ 2 } } } }=\frac { 1 }{ 2 } \left[ { 4{ e^{ x } }-{ e^{ x } } } \right] +c \\ t{ e^{ { x^{ 2 } } } }=\frac { { { e^{ { x^{ 2 } } } } } }{ 2 } \left( { { x^{ 2 } }-1 } \right) +c \\ \tan  y=\frac { 1 }{ 2 } \left[ { { x^{ 2 } }-1 } \right] +c\cdot { e^{ { x^{ 2 } } } } \end{array}$$
  • Question 6
    1 / -0
    The solution of $$\dfrac { dx }{ dy } -\dfrac { 2 }{ 3 } xy={ x }^{ 4 }{ y }^{ 3 }$$ is
  • Question 7
    1 / -0
    Solution of $${y^2}dx + ({x^2} - xy + {y^2})dy = 0$$ 
    Solution

    $${y^2}dx + \left( {{x^2} - xy + 42} \right)dy = 0$$

    $$\displaystyle {{dx} \over {dy}} = {{ - \left( {{x^2} - xy + {y^2}} \right)} \over {{y^2}}}$$

    $$\displaystyle {{dx} \over {dy}} =  - {{{x^2}} \over {{y^2}}} + {x \over y} - 1$$

    Put $$ v = x/y\implies x=vy$$

    $$dx/dy = v + ydv/dy$$

    $$ \Rightarrow v + ydv/dy =  - {v^2} + v - 1$$

    $$ \Rightarrow ydv/dy =  - \left( {{v^2} + 1} \right)$$

    $$\displaystyle {{dv} \over {{v^2} + 1}} =  - {1 \over y}dy$$

    Integrating both side

    $$ \Rightarrow {\tan ^{ - 1}}v =  - \log y + c$$

    $$ \Rightarrow {\tan ^{ - 1}}x/y =  - \log y + c\,\,\,\,c =  - c$$

    $$ \Rightarrow {\tan ^{ - 1}}\left( {x/y} \right) + \log y + c = 0$$

  • Question 8
    1 / -0

    If tangent at point p, with parameter t, on the curve $$x=4t^2+3$$,$$y=8t^3-1,t \epsilon R,$$ meets the curve again at point Q, then the coordinates of Q are:- 

    Solution
    Given,

    $$P(x=4t^2+3,y=8t^3-1)$$

    $$\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dy}{dt}}$$

    $$=\dfrac{24t^2}{8t}=3t$$

    Tangent at P is given by, $$(y-8t^3+1)=3t(x-4t^2-3)$$

    Let,

    $$Q(4t_1^2+3,8t_1^3-1)$$

    Therefore  Q satisfies the equation of tangent at P, 

    $$8t_1^3-1-8t^3+1=3t(4t_1^2+3-4t^2-3)$$

    $$8t_1^3-8t^3=3t(4t_1^2-4t^2)$$

    $$8(t_1-t)(t^2+tt_1+t_1^2)=3t \times 4(t_1-t)(t_1+t)$$

    $$2(t^2+tt_1+t_1^2)=3t(t_1+t)$$

    $$2t_1^2-tt_1+t^2=0$$

    $$(t_1-t)(2t_1+t)=0$$

    $$t_1=-\dfrac{t}{2}$$

    $$\therefore Q=(4t_1^2+3,8t_1^3-1)=(t^2+3,-t^3-1)$$
  • Question 9
    1 / -0
    The solution of $$\dfrac{dx}{dy} + \dfrac{x}{y} = x^2$$  is 
    Solution
    $$ \dfrac{dx}{dy}+\dfrac{x}{y} = x^{2} $$
    $$ \dfrac{1}{x^{2}}\dfrac{dx}{dy}+\dfrac{1}{xy} = 1 $$
    Let $$ \dfrac{1}{x} = 1 $$
    $$ \dfrac{-1}{x^{2}}\dfrac{dx}{dy} = \dfrac{dt}{dy} $$
    $$ \dfrac{-dt}{dy}+\dfrac{t}{y} = 1 $$
    $$ \dfrac{dt}{dy}+(\dfrac{-1}{y})t = -1 $$
    I.f $$\displaystyle e\int \dfrac{1}{y}dy $$
    I.f $$ = \dfrac{1}{y} $$
    $$\displaystyle t.\dfrac{1}{y} = \int -1\times \dfrac{1}{y} = -\int \dfrac{1}{y} $$
    $$ \dfrac{1}{xy} = -lny+c $$
    $$ \dfrac{1}{x} = -y\,ln\,y+cy $$
    $$ \dfrac{1}{x} = cy-y\,ln\,y $$

  • Question 10
    1 / -0
    If $$y = cos^{-1} x$$ then $$(1 - x^2)y'' -xy'=?$$ where $$y'= \dfrac{dy}{dx}$$
    Solution
    $$\begin{array}{l} y={ \cos ^{ -1 }  }x \\ \frac { { dy } }{ { dx } } =-\frac { 1 }{ { \sqrt { 1-{ x^{ 2 } } }  } }  \\ \left( { 1-{ x^{ 2 } } } \right) y_{ 1 }^{ 2 }-1=0 \\ { y_{ 1 } }=\frac { { dy } }{ { dx } } \, \, \, \, \, ,{ y_{ 2 } }=\frac { { { d^{ 2 } }y } }{ { d{ x^{ 2 } } } }  \\ -2xy_{ 1 }^{ 2 }+\left( { 1-{ x^{ 2 } } } \right) 2{ y_{ 1 } }{ y_{ 2 } }=0 \\ -x{ y_{ 1 } }+\left( { 1-{ x^{ 2 } } } \right) { y_{ 2 } }=0 \\ \left( { 1-{ x^{ 2 } } } \right) { y_{ 2 } }-x{ y_{ 1 } }=0 \\ \left( { 1-{ x^{ 2 } } } \right) y''-xy'=0 \\ Option\, \, B\, \, \, is\, \, correct\, \, answer. \end{array}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now