Self Studies

Differential Equations Test - 38

Result Self Studies

Differential Equations Test - 38
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The solution of $$\dfrac{dy}{dx}=\dfrac{y}{x}+\tan\left(\dfrac{y}{x}\right)$$.
    Solution

    $$\begin{matrix} \dfrac { { dy } }{ { dx } } =\dfrac { g }{ n } +\tan  \left( { \dfrac { y }{ x }  } \right)  \\ It\, \, is\, \, { { homogenouous\ diffenrential\ equation } } \\ { { Lety= } }\sqrt { x }  \\ \Rightarrow \dfrac { { dy } }{ { dx } } =\sqrt {  } +\dfrac { { xdv } }{ { dx } }  \\ and\, \, put\, \, in\, \, differential\, \, equation\, \,  \\ \Rightarrow \sqrt {  } +x\dfrac { { dv } }{ { dx } } =\sqrt {  } +\tan  v \\ \Rightarrow \dfrac { { xdv } }{ { dx } } =\tan  v \\ \Rightarrow \int { \dfrac { { dv } }{ { \tan  v } } =\int { \dfrac { { dx } }{ x }  }  }  \\ \Rightarrow \int { \sec  v=\log  x+c }  \\ \Rightarrow \log  \left| { \sec  v=\tan  v } \right| \log  xc \\ \Rightarrow \log  \left| { \sec  \dfrac { y }{ x } +\tan  \dfrac { y }{ x }  } \right| =\log  xc \\ \, \, \, \left| { \sec  \dfrac { y }{ x } +\tan  \dfrac { y }{ x }  } \right| =xc\, \, \, Ans. \\  \end{matrix}$$

  • Question 2
    1 / -0
    Solve :

    $$\displaystyle\int (x^x)^x(2xlog_ex+x)dx$$ 
    Solution

    Consider the given integral.

    $$I=\int{{{\left( {{x}^{x}} \right)}^{x}}\left( 2x\log x+x \right)}dx$$

    $$I=\int{\left( {{x}^{{{x}^{2}}}} \right)\left( 2x\log x+x \right)}dx$$

     

    Let $$t={{x}^{{{x}^{2}}}}$$

    $$ \log t={{x}^{2}}\log x $$

    $$ \dfrac{1}{t}\dfrac{dt}{dx}=\left( 2x\log x+x \right) $$

    $$ dt={{x}^{{{x}^{2}}}}\left( 2x\log x+x \right)dx $$

     

    Therefore,

    $$ I=\int{1dt} $$

    $$ I=t+C $$

     

    On putting the value of $$t$$, we get

    $$I={{x}^{{{x}^{2}}}}+C$$

    $$I={{x}^{{{x}^{x}}}}+C$$

     

    Hence, this is the answer.

  • Question 3
    1 / -0
    The differential equation of all parabolas having their axis of symmetry with the axis of x is?
    Solution
    $$Let\, \, a\, \, is\, \, { { constant } } \\ { { { y } }^{ 2 } }=4ax\to \left( i \right)  \\ differentiate\, \, with\, \, respection \\ \Rightarrow 2y\, \, \frac { { dy } }{ { dx } } =4a\times 1 \\ \Rightarrow 2y\, \, \frac { { dy } }{ { dx } } =4a\to \left( { ii } \right)  \\ Put\, \, 4a=2y\frac { { dy } }{ { dx } } \, \, in\, \, e{ q^{ n } }\, \left( i \right)  \\ \Rightarrow { y^{ 2 } }=2y\frac { { dy } }{ { dx } } \times x \\ \Rightarrow y=2\frac { { dy } }{ { dx } } \times x \\ \therefore y=2x\frac { { dy } }{ { dx } }  \\ It\, \, is\, \, required\, \, differentiate\, \, e{ q^{ n } }\, \, of\, \, parabola\, \, \,  \\ \, \, \, \, \, \, \, \, $$
  • Question 4
    1 / -0
    If $$c$$ is any arbitrary constant, then the general solution  of differential equation $$ydx-xdy=xydx$$ is  given by -
    Solution
    $$ydx-xdy=xydx$$
    $$ydx-xydx=xdy$$
    $$y(1-x)dx=xdy$$
    $$\dfrac{1-x}{x}dx=\dfrac{dy}{y}$$
    Integrating both side
    $$\int{\left(\dfrac{1-x}{x}\right)dx}=\int{\dfrac{dy}{y}}$$
    $$\log_e x-x=\log_e y+c$$
    $$\log_e {\dfrac{x}{y}}=x+c$$
    $$\dfrac{x}{y}=e^c\cdot e^x$$
    $$y=e^cxe^{-x}$$
    suppose $$c=e^c$$
    then,
    $$y=cxe^{-x}$$

  • Question 5
    1 / -0
    The solution of the equation $$\dfrac {dy}{dx}+\sqrt {\dfrac { {1-y}^{2} }{ {1-x}^{2} }}=0$$ is 
    Solution
    Let $$ x\sqrt{1-y^{2}}+y\sqrt{1-x^{2}} = c $$ be the solution of
    the given equation $$ \dfrac{dy}{dx}+\sqrt{\dfrac{1-y^2}{1-x^2}} = 0$$
    So, lets verify the solution,
    differentiating equation w.r.t, x, we get,
    $$ x(\dfrac{-2yy'}{2\sqrt{1-y^2}})+\sqrt{1-y^2}+y(\dfrac{-2x}{2\sqrt{1-x^2}})+y'\sqrt{1-x^2} = 0$$
    $$ \dfrac{-xyy'}{\sqrt{1-y^{2}}}+\sqrt{1+y^2}-\dfrac{yx}{\sqrt{1-x^2}}+y'\sqrt{1+x^2} = 0$$
    $$ y'(\dfrac{-xy}{\sqrt{1-y^2}}+\sqrt{1-x^2}) = \dfrac{yx}{\sqrt{1-x^2}} - \sqrt{1-y^2}$$
    $$ y' (\dfrac{-xy+\sqrt{1-x^{2}}\sqrt{1-y^2}}{1-y^2}) = \dfrac{xy-\sqrt{1-y^2}\sqrt{1-x^2}}{\sqrt{1-x^2}}$$
    $$ y' = \dfrac{(xy-\sqrt{1-y^2}\sqrt{1-x^2})(1-y^2)}{(1-x^2)(-(xy-\sqrt{1-x^2}\sqrt{1-y^2}))}$$
    $$ \dfrac{dy}{dx} y' \Rightarrow -\dfrac{\sqrt{1-y^2}}{\sqrt{1-x^2}}$$
    $$ \Rightarrow \dfrac{dy}{dx}+\sqrt{\dfrac{1-y^{2}}{1-x^{2}}} = 0$$ which is the given
    differential equation.
    So, option (C) is correct.

  • Question 6
    1 / -0
    The solution of $$\dfrac{dy}{dx}=\dfrac{\sqrt{x^2-y^2}+y}{x}$$.
    Solution
    Given, 
    $$\dfrac{dy}{dx}=\dfrac{\sqrt{x^2-y^2}+y}{x}$$
    Let $$y=vx$$
    So, $$\dfrac{dy}{dx}=v+x\dfrac{dv}{dx}$$
    substituting,
    $$=v+x\dfrac{dv}{dx}=\dfrac{\sqrt{x^2-(vx)^2}+vx}{x}$$
    $$=v+x\dfrac{dv}{dx}=\dfrac{\sqrt{x^2-v^2x^2}+vx}{x}$$
    $$=v+x\dfrac{dv}{dx}=\dfrac{\sqrt{x^2-(1-v^2)}+vx}{x}$$
    $$=v+x\dfrac{dv}{dx}=\dfrac{x\sqrt{(1-v^2)}+vx}{x}$$
    $$=v+x\dfrac{dv}{dx}=\sqrt{1-v^2}+v$$
    $$=x\dfrac{dv}{dx}=\sqrt{1-v^2}$$
    $$=\dfrac{dv}{\sqrt{1-v^2}}=\dfrac{dx}{x}$$
    Integrating,
    $$\displaystyle \int{\dfrac{dv}{\sqrt{1-v^2}}}=\displaystyle \int{\dfrac{dx}{x}}$$
    as $$\displaystyle \int{\dfrac{1}{\sqrt{1-x^2}}dx}=\sin^{-1}x$$
    and $$\displaystyle \int{\dfrac{1}{x}dx}=\log x$$
    $$=\sin^{-1}v=\log x+\log c$$
    $$=\sin^{-1}v=\log(cx)$$
    as $$\log a+\log b=\log ab$$
    $$=\sin^{-1} \dfrac{y}{x}=\log (cx)$$
    So, the solution of $$\dfrac{dy}{dx}=\dfrac{\sqrt{x^2-y^2}+y}{x}$$
    is $$\sin^{-1}\dfrac{y}{x}=\log (cx)$$
  • Question 7
    1 / -0
    The solution of the differential equations $$\dfrac{dy}{dx}=\dfrac{x-2y+1}{2x-4y}$$ is?
    Solution
    Given,
    $$\dfrac{dy}{dx}=\dfrac{x-2y+1}{2x-4y}$$
    Let $$x-2y t$$
    So, $$1-\dfrac{2dy}{dx}=\dfrac{dt}{dx}$$
    $$=1-\dfrac{dt}{dx}=2\dfrac{dy}{dx}$$
    $$=\dfrac{1-\dfrac{dt}{dx}}{2}=\dfrac{dy}{dx}$$
    substituting, 
    $$\dfrac{1-\dfrac{dt}{dx}}{2}=\dfrac{t+1}{2t}$$
    $$=1-\dfrac{dt}{dx}=\dfrac{t+1}{t}$$
    $$=1-\dfrac{dt}{dx}=1+\dfrac{1}{t}$$
    $$=-\dfrac{dt}{dx}=\dfrac{1}{t}$$
    $$=-tdt=dx$$
    Integrating,
    $$-\displaystyle \int{t dt}=\displaystyle \int{dx}$$
    $$=-\dfrac{t^2}{2}=x+C$$
    $$=C=x+\dfrac{t^2}{2}$$
    $$=C=x+\dfrac{(x-2y)^2}{2}$$
    $$=C=2x+(x-2y)^2$$
    So, the solution of 
    $$\dfrac{dy}{dx}=\dfrac{x-2y+1}{2x-4y}$$ is 
    $$(x-2y)^2+2x=C$$
  • Question 8
    1 / -0
    The solution of $$x\sqrt{1+y^2}dx+y\sqrt{1+x^2}dy=0$$.
    Solution
    Given,
    $$x\sqrt{1+y^2}dx+y\sqrt{1+x^2}dy=0$$
    separating the variable,
    $$x\sqrt{1+y^2}dx=-\sqrt{1+x^2}dy$$
    $$=\dfrac{x}{\sqrt{1+x^2}}dx=-\dfrac{y}{\sqrt{1+y^2}}dy$$
    Let $$1+x^2=t$$
    So, $$2x dx=dt$$
    Let $$1+y^2=u$$
         $$2y dy=du$$
    substituting,
    $$\dfrac{dt}{2\sqrt t}=-\dfrac{dt}{2\sqrt u}$$
    Integrating,
    $$\dfrac{1}{2}\displaystyle \int{\dfrac{dt}{\sqrt t}}=\dfrac{-1}{2}\displaystyle \int{\dfrac{du}{\sqrt{ t^2}}}$$
    $$\dfrac{1}{2}\displaystyle \int{t-\dfrac{1}{2}dt}=\dfrac{-1}{2}\displaystyle \int{-\dfrac{1}{2}\displaystyle \int{u-\dfrac{1}{2}du}}$$
    as $$\displaystyle \int{x^n dx}=\dfrac{x^{n+1}}{n+1}$$
    $$=\dfrac{1}{2}\dfrac{t^{-1/2+1}}{\dfrac{-1}{2}+1}=\dfrac{-1}{2}\dfrac{u^{-1/2+1}}{\dfrac{-1}{2}+1}+c$$
    $$=\dfrac{t^{1/2}}{1/2}=\dfrac{-u^{1/2}}{1/2}+c$$
    $$=t^{1/2}+u^{1/2}=c$$
    $$=\sqrt t+\sqrt u=c$$
    $$=\sqrt{1+x^2}+\sqrt{1+y^2}=c$$
    So, the solution of $$x\sqrt{1+y^2}dx+y\sqrt{1+x^2}dy=0$$ is $$\sqrt{1+x^2}+\sqrt{1+y^2}=c$$
  • Question 9
    1 / -0
    The solution of $$\dfrac{dy}{dx}=(1+y^2)(1+x^2)^{-1}$$ is?
    Solution
    $$\cfrac{dy}{dx}=(1+y^2)(1+x^2)^{-1}$$
    $$\implies \cfrac{dy}{(1+y^2)}=\cfrac{dx}{(1+x^2)}$$
    $$\implies \int \cfrac{dy}{(1+y^2)}=\int \cfrac{dx}{(1+x^2)}$$
    $$\implies \tan^{-1}y=\tan^{-1}x+\tan^{-1}c$$
    $$\tan^{-1}(\cfrac{y-x}{1+xy}=\tan^{-1}c$$
    $$\implies \cfrac{y-x}{1+xy}=c$$
    $$\implies y-x=c(1+xy)$$


  • Question 10
    1 / -0
    The solution of $$\dfrac{dy}{dx}=\dfrac{y^2}{xy-x^2}$$.
    Solution
    $$\frac { { dy } }{ { dx } } =\frac { { { y^{ 2 } } } }{ { xy-{ x^{ 2 } } } }  \\ \frac { { dy } }{ { dx } } =\frac { { { y^{ 2 } } } }{ { { x^{ 2 } }\left( { \frac { y }{ x } -1 } \right)  } }  \\ Continue\, \,  \\ \frac { { dy } }{ { dx } } =\frac { { { { \left( { \frac { y }{ x }  } \right)  }^{ 2 } } } }{ { \left( { \frac { y }{ x } -1 } \right)  } } \to \left( i \right) \, \, \, \, \, \, \left[ { It\, \, is\, \, ogenous\, \, e{ q^{ n } } } \right]  \\ Let\, \, y=vx\, \, ,\, \, \frac { y }{ x } =v \\ \frac { { dy } }{ { dx } } =v+\frac { { xdv } }{ { dx } } \, \, and\, \, put\, \, in\, \, e{ q^{ n } } \\ \Rightarrow v+\frac { { xdv } }{ { dx } } =\frac { { { v^{ 2 } } } }{ { \left( { v-1 } \right)  } }  \\ \Rightarrow \frac { { xdv } }{ { dx } } =\frac { { { v^{ 2 } } } }{ { v-1 } } -v \\ \Rightarrow \frac { { xdv } }{ { dx } } =\frac { { { v^{ 2 } }-{ v^{ 2 } }+v } }{ { v-1 } }  \\ \Rightarrow \int { \frac { { \left( { v-1 } \right)  } }{ v } dx=\int { \frac { { dx } }{ x }  }  }  \\ \Rightarrow \int { \frac { v }{ v } dv-\int { \frac { 1 }{ v } dv=\log  x+c }  }  \\ \Rightarrow \int { dv-\log  v=\log  x+c }  \\ \Rightarrow v-\log  v=\log  x+c \\ \Rightarrow \frac { y }{ x } -\log  \frac { y }{ x } =\log  xc \\ \Rightarrow \frac { y }{ x } =\log  xc+\log  \frac { y }{ x }  \\ \Rightarrow \frac { y }{ x } =\log  cy \\ \therefore cy={ e^{ \frac { y }{ x }  } } \\ \, \, \, \, \boxed { y=\frac { { { e^{ \frac { y }{ x }  } } } }{ c }  } \, $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now