Self Studies

Differential Equations Test - 45

Result Self Studies

Differential Equations Test - 45
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    if $$ y = y(x) $$ and $$ \dfrac{ 2 + sinx }{y + 1}(\dfrac{dy}{dx}) = -cosx, y(0) = 1, then y(\pi/2) $$ equals
    Solution
    $$ \dfrac{1}{y + 1}dy = -\dfrac{cosx}{2 + sinx}dx $$
    Integrating, we get
    $$ log (y + 1) + log k + log(2+sinx) = 0 $$
    $$ \therefore  k(y + 1)(2 + sinx) = 1 $$ when $$ x=0, y=1 $$ where $$ k $$ is constant.
    $$ \therefore 4k = 1 $$ or $$ k =1/4 $$ 
    $$\therefore  (y+ 1)(2 + sinx) = 4 $$
    Now put $$ x = \pi/2   \therefore  (y + 1)3 = 4 $$
    $$ \therefore y = \dfrac{1}{3} $$ 
  • Question 2
    1 / -0
    Let $$f(x)$$ be a function such that $$f(0)=f'(0)=0, f''(x)=\sec^{4}x+4$$, then the function is
    Solution

  • Question 3
    1 / -0
    The solution of the equation $$ (x^{2}y + x^{2})dx + y^{2}(x-1)dy = 0 $$ is given by
    Solution
    $$ x^{2}(y+1)dx + y^{2}(x-1)dy = 0 $$
    $$ \implies \dfrac{x^{2}dx}{x-1} = -\dfrac{y^{2}dy}{y+1} $$
    $$ \implies \int [x+1+\dfrac{1}{x-1}]dx = -\int[y-1+\dfrac{1}{y+1}]dy $$
    $$ \implies \dfrac{x^{2}}{2} + x + ln(x-1) = -[\dfrac{y^{2}}{2} - y + ln(y+1)] + lnc $$
    $$ \implies \dfrac{x^{2} + y^{2}}{2} + (x-y) + ln(\dfrac{(x-1)(y+1)}{c} = 0 $$
  • Question 4
    1 / -0
    Solution of $$ 2y sin x \frac {dv}{dx}= 2 sin x cos x -y^2 cos x, $$ for $$x = \frac { \pi}{2} , y = 1 $$ is 
    Solution

  • Question 5
    1 / -0
    If $$ \phi(x) =\int \left\{ \phi (x) \right\}^{-2} $$dx and $$ \phi ( 1) =0 $$ then $$ \phi (x) = $$
    Solution

  • Question 6
    1 / -0
    If $$ x\dfrac{dy}{dx} = y(\log y - \log x + 1) $$, then the solution of the equation is 
    Solution
    $$ \dfrac{dy}{dx} = \dfrac{x}{y}[\log \dfrac{y}{x} +1] $$
    Put $$ y = vx $$
    $$ v + x\dfrac{dy}{dx} = v\log v = v $$
    $$ \therefore  \dfrac{dv}{v \log v} = \dfrac{dx}{x} $$
    $$ \therefore  \log (\log v) = \log x + \log c = \log cx $$
    $$ \therefore log \dfrac{y}{x} = cx $$
  • Question 7
    1 / -0
    Solution of $$ \dfrac{dy}{dx} + 2xy = y $$ is 
    Solution
    $$ \dfrac{dy}{dx} + 2xy = y $$
    $$ \implies \dfrac{dy}{dx} = y(1 - 2x) $$
    $$ \implies \dfrac{dy}{y} = (1-2x)dx $$
    $$ \implies log y = x - x^{2} + c_{1} $$
    $$ \implies y = e^{x - x^{2}} e^{c_{1}} = ce^{x - x^{2}} $$   where $$ c = e^{c_{1}} $$
    $$ \implies y = ce^{x - x^{2}} $$ is the required solution. 
  • Question 8
    1 / -0
    The solution of differential equation $$ yy' = x\big(\dfrac{y^{2}}{x^{2}} + \dfrac{f (y^{2}/x^{2})}{f' (y^{2}/x^{2})}\big) $$ is
    Solution
    The given equation can be written as
    $$ \dfrac{dy}{dx} = \big[\dfrac{y^{2}}{x^{2}} + \dfrac{f(y^{2}/x^{2})}{f'(y^{2}/x^{2})}\big] $$
    Above equation is a homogeneous equation.
    Putting $$ y = vx $$, we get
    $$ v [v + x\dfrac{dv}{dx}] = v^{2} + \dfrac{f(v^{2})}{f'(v^{2})} $$
    $$ \implies vx\dfrac{dv}{dx} = \dfrac{f(v^{2})}{f'(v^{2})} $$ variable separable
    $$ \implies \dfrac{2vf'(v^{2})}{f(v^{2})}dv = 2\dfrac{dv}{x} $$
    Now integrating both side, we get
    $$ \log f(v^{2}) = \log x^{2} + \log c $$   [$$ \log c = $$ constant]
    or $$  f(v^{2}) = \log cx^{2} $$
    or $$  f(y^{2}/x^{2}) = cx^{2} $$
  • Question 9
    1 / -0
    if integrating factor of $$ x(1-x^{2})dy + (2x^{2}y - y -ax^{3})dx=0 $$ is $$ e^{\int pdx} $$, then P is equal to 
    Solution
    $$ x(1-x^{2})dy + (2x^{2}y-y-ax^{3})dx = 0 $$
    $$ \implies x(1-x^{2}) \dfrac{dy}{dx} + 2x^{2}y-y-ax^{3} = 0 $$
    $$ \implies x(1-x^{2}) \dfrac{dy}{dx} + y(2x^{2}-1) = ax^{3}) $$
    $$ \implies \dfrac{dy}{dx} + \dfrac{2x^{2}-1}{x(1-x^{2})}y= \dfrac{ax^{3}}{x(1-x^{2})} $$
    which is of the form $$ \dfrac{dy}{dx} +Py = Q $$
    Its integrating factor is $$ e^{\int Pdx} $$
    Here $$ P=\dfrac{2x^{2}}{x(1-x^{2})} $$
  • Question 10
    1 / -0
    The solution of differentiation equation $$(2y+xy^{3})dx+(x+x^{2}y^{2})dy=o $$ is 
    Solution
    $$ (2y+xy^{3})dx+(x+x^{2}y^{2})dy = 0 $$
    $$ \implies (2ydx + xdy) + (xy^{3}dx+x^{2}y^{2}dy) + 0 $$
    Multiplying by $$x$$, we get
    $$ (2xydx + x^{2}dy) + (x^{2}y^{3}dx+x^{3}y^{2}dy) = 0 $$
    $$ \implies d(x^{2}y)+\dfrac{1}{3}d(x^{3}y^{3}) = 0 $$
    Integrating, we get $$ x^{2}y + \dfrac{x^{3}y^{3}}{3} = c $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now