Self Studies

Differential Equations Test - 47

Result Self Studies

Differential Equations Test - 47
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The solution of the differential equation $$ y(2x^{2}+y)\dfrac{dy}{dx}=(1-4xy^{2})x^{2} $$ is given by
    Solution
    $$ y(2x^{4}+y)\dfrac{dy}{dx}=91-4xy^{2})x^{2} $$
    $$ \implies 2x^{4}ydy+y^{2}dy+4x^{3}y^{2}dx-x^{2}dx=0 $$
    $$ \implies 2x^{2}y(x^{2}dy+2xydx)+y^{2}dy-x^{2}dx=0 $$
    $$ \implies 2x^{2}yd(x^{2}y)+y^{2}dy-x^{2}dx=0$$
    Integrating, we get $$ (x^{2}y^{2})^{2}+\dfrac{y^{3}}{3}-\dfrac{x^{3}}{3}=c $$
    or $$ 3(x^{2}y)^{2}+y^{3}-x^{3}=c $$
  • Question 2
    1 / -0
    The solution of the following differential equation $$ [1+x\sqrt{(x^{2}+y^{2})}]dx+[\sqrt{(x^{2}+y^{2})-1}]ydy=0 $$ is equal to
    Solution
    $$ [1+x\sqrt{(x^{2}+y^{2})}]dx+[\sqrt{(x^{2}+y^{2})-1}]ydy=0 $$

    $$ \implies dx-ydy+\sqrt{(x^{2}+y^{2}})(xdx+ydy)=0 $$

    $$ \implies dx-ydy+\dfrac{1}{2}\sqrt{(x^{2}+y^{2})}d(x^{2}+y^{2})=0 $$

    Integrating, we have

    $$ x-\dfrac{y^{2}}{2}+\dfrac{1}{2} \int \sqrt{t} dt=c, (t=\sqrt{(x^{2}+y^{2})}) $$

    or $$ x-\dfrac{y^{2}}{2}+\dfrac{1}{3}(x^{2}+y^{2})^{3/2)}=c $$
  • Question 3
    1 / -0
    The solution of the differential equation $$\dfrac{dy}{dx}=\dfrac{3x^{2}y^{4}+2xy}{x^{2}-2x^{3}y^{3}} $$ is
    Solution
    Re-write the D.E. as
    $$(2xydx-x^{2}dy)+y^{2}(3x^{2}y^{2}dx+2x^{3}ydy)=0 $$

    Dividing by $$y^{2}$$, we get

    $$ \dfrac{y2xdx-x^{2}dy}{y^{2}} +y^{2}3x^{2}dx+x^{3}2ydy=0 $$

    or $$ d(\dfrac{x^{2}}{y})+d(x^{3}y^{2})=0 $$

    Integrating, we get the solution 

    $$ \dfrac{x^{2}}{y}+x^{3}y^{2}=c $$
  • Question 4
    1 / -0
    Number of values of $$m\in N$$ for which $$y=e^{mx}$$ is a solution of the differential equation $$\dfrac{d^3y}{dx^3}-3\dfrac{d^2y}{dx^2}-4\dfrac{dy}{dx}+12y=0 $$
    Solution
    $$ y=e^{mx} $$ satisfies $$ \dfrac{d^3y}{dx^3}-3\dfrac{d^2y}{dx^2}-4\dfrac{dy}{dx}+12y=0 $$
    then $$ e^{mx}(m^3-3m^2-4m+12)=0 $$
    $$ \implies m=\pm 2,3 $$
    $$ m\in N $$ hence $$ m\in (2,3) $$
  • Question 5
    1 / -0
    The solution of the differential equation $$ \dfrac{x+\dfrac{x^3}{3!}+\dfrac{x^5}{5!}+ \dots}{1+\dfrac{x^2}{2!}+\dfrac{x^4}{4!}+\dots}=\dfrac{dx-dy}{dx+dy} $$ is
    Solution
    Applying componendo and divedendo we get
    $$\dfrac{dy}{dx}=\dfrac{e^{-x}}{e^x}=e^{-2x} $$
    $$ \implies 2y=-e^{-2x}+C $$
    $$ \implies 2ye^{2x}=Ce^{2x}-1 $$
  • Question 6
    1 / -0
    The solution of the differential equation $$\dfrac {dy}{dx}=\dfrac {1+y^2}{1+x^2}$$ is :
    Solution
    Given that,
    $$\dfrac{1+y^2}{1+x^2}$$
    $$\Rightarrow \dfrac{dy}{1+y^2}=\dfrac{dx}{1+x^2}$$
    On integrating both sides, we get 
    $$\displaystyle \int{\dfrac{dy}{1+y^2}}=\displaystyle \int{\dfrac{dx}{1+x^2}}$$
    $$\tan^{-1}y=\tan^{-1}x+C$$
    $$\Rightarrow \tan^{-1}y-\tan^{-1}x=C$$
    $$\Rightarrow \tan^{-1}\left( \dfrac{y-x}{1+xy}\right)=C$$
    $$\Rightarrow \dfrac{y-x}{1+xy}=\tan C$$
    $$\Rightarrow y-x=\tan C (1+xy)$$
    $$\Rightarrow y-x=K(1+xy)$$
    Where, $$k=\tan C$$
  • Question 7
    1 / -0

    Directions For Questions

    Differential equation $$\dfrac{dy}{dx}=f(x)g(x)$$ can be solved by
    separating variable $$\dfrac{dy}{g(y)}=f(x)dx$$

    ...view full instructions

    Solution of the diffrential equation $$\dfrac{dy}{dx}+ \dfrac {1+y^2}{\sqrt {1-x^2}}=0$$ is
    Solution
    $$\dfrac{dy}{dx}+ \dfrac {1+y^2}{\sqrt {1-x^2}}=0$$

    $$ \displaystyle \Rightarrow \dfrac{dy}{1+y^2}+ \dfrac {dx}{\sqrt {1-x^2}}=0$$

    $$ \Rightarrow  \tan^{-1} y + \sin ^{-1} x=C$$
  • Question 8
    1 / -0
    Differential equation $$\dfrac{dy}{dx}=f(x)g(x)$$ can be solved by
    separating variable $$\dfrac{dy}{g(y)}=f(x)dx$$

    If $$\dfrac{dy}{dx}=1+x+y+xy$$ and $$y(-1)=0$$, then $$y$$ is equal to 
    Solution
    $$\dfrac{dy}{dx}=1+x+y+xy$$ 

    $$\dfrac{dy}{dx}=(1+x).(1+y)$$ 

    $$\dfrac {dy}{(1+y)}=(1+x)dx$$

    $$\ln (1+y)=x+\dfrac {x^2}{2}+c$$

    at $$x=-1, y=0$$

    $$\ln (1+0)=-1+\dfrac {1}{2}+c$$

    $$0=\dfrac {-1}{2}+c \Rightarrow c=\dfrac12$$

    $$\ln (1+y)=x+\dfrac {x^2}{2}+\dfrac 12$$

    $$\ln (1+y)=\dfrac {(x+1)^2}{2}$$

    $$y=e^{\dfrac {(x+1)^2}{2}}-1$$
  • Question 9
    1 / -0
    Which of the following is the general solution of $$\dfrac{d^2y}{dx^2}-2\dfrac{dy}{dx}+y=0$$?
    Solution
    Given that, $$\dfrac{d^2y}{dx^2}-2\dfrac{dy}{dx}+y=0$$
    $$D^2y-2Dy+y=0$$,
    Where, $$D=\dfrac{d}{dx}$$
    $$(D^2-2D+1)y=0$$
    The auxiliary equation is $$m^2-2m+1=0$$
    $$(m-1)^2=0 \Rightarrow m=1, 1$$
    Since, the roots are real and equal.
    $$\therefore CF=(Ax+B)e^x\\ \Rightarrow y=(Ax+B)e^x$$
    [ since, if roots of Auxiliary equation are real and equal say (m), then $$CF=(C_1x+C_2)e^{mx}]$$
  • Question 10
    1 / -0
    Solution of $$\displaystyle \sqrt{1+x^{2}+y^{2}+x^{2}y^{2}}+xy\frac{dy}{dx}=0$$, is:
    Solution
    Given,  $$\displaystyle \sqrt{1+x^{2}+y^{2}+x^{2}y^{2}}+xy\dfrac{dy}{dx}=0$$
    $$\Rightarrow \sqrt{1+y^{2}}\sqrt{1+x^{2}} = -xy\dfrac{dy}{dx}$$
    Integrating both sides, we get
    $$\Rightarrow \displaystyle\int {\dfrac{\sqrt{1+x^{2}}}{x}dx} = -\displaystyle\int{\dfrac{y}{\sqrt{1+y^{2}}}}dy$$
    Substitute, $$ 1+ y^{2}=t^{2} $$  $$\Rightarrow$$  $$ 2y dy = 2t dt $$
    $$\Rightarrow$$  $$\displaystyle\int {\dfrac{\sqrt{1+x^{2}}}{x}dx} =  - \displaystyle\int dt=- t+c = -\sqrt{1+y^{2}} +c $$
    Now substitute, $$ 1+x^{2}= k^{2}$$  $$\Rightarrow$$  $$ 2x dx = 2k dk $$
      $$\Rightarrow \displaystyle\int\dfrac{k^{2}}{x^{2}}dk = -\sqrt{1+y^{2}} +c $$
    $$\Rightarrow \displaystyle\int\dfrac{k^{2}}{k^{2}-1}dk = -\sqrt{1+y^{2}} +c $$
    $$\Rightarrow \displaystyle\int\left[\dfrac{k^{2}-1}{k^{2}-1}+\dfrac{1}{k^{2}-1}\right]dk = -\sqrt{1+y^{2}} + c $$
    $$\Rightarrow k +\dfrac{1}{2}\log{\dfrac{k-1}{k+1}} = -\sqrt{1+y^{2}} +C $$
    Since , $$\displaystyle\int\dfrac{1}{x^{2}-d^{2}}dx=\dfrac{1}{2d}\log{\dfrac{x-d}{x+d}}+\mbox{constant}$$
    $$\therefore \sqrt{1+x^{2}} +\dfrac{1}{2}\log{\dfrac{\sqrt{1+x^{2}}-1}{\sqrt{1+x^{2}}+1}}+\sqrt{1+y^{2}}= C$$
    $$\Rightarrow \sqrt{1+x^{2}} +\log\left(\dfrac{x}{\sqrt{1+x^{2}}+1}\right)+\sqrt{1+y^{2}}= C$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now