Self Studies

Differential Equations Test - 50

Result Self Studies

Differential Equations Test - 50
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The general solution of $$xy^{5}=y_{4}(y_{n}=\displaystyle\frac{d^{n}y}{dx^{n}})$$ is given by:
    Solution
    $$\displaystyle x{ y }^{ 5 }=\frac { { d }^{ 4 }y }{ d{ x }^{ 4 } } \Rightarrow \frac { { d }^{ 4 }y }{ d{ x }^{ 4 } } { y }^{ -5 }=x$$
    $$\displaystyle \Rightarrow \frac { { d }^{ 3 }y }{ d{ x }^{ 3 } } \frac { { y }^{ -4 } }{ -4 } =\frac { { x }^{ 2 } }{ 2 } +c$$
    $$\displaystyle \Rightarrow \frac { { d }^{ 2 }y }{ d{ x }^{ 2 } } \frac { { y }^{ -3 } }{ 12 } =\frac { { x }^{ 3 } }{ 6 } +cx+d$$
    $$\displaystyle \Rightarrow \frac { dy }{ dx } \frac { { y }^{ -2 } }{ -24 } =\frac { { x }^{ 4 } }{ 24 } +\frac { c{ x }^{ 2 } }{ 2 } +dx+e$$
    $$\displaystyle \Rightarrow \frac { { y }^{ -1 } }{ 24 } =\frac { { x }^{ 5 } }{ 120 } +\frac { c{ x }^{ 3 } }{ 6 } +\frac { d{ x }^{ 2 } }{ 2 } +ex+f$$
    $$\Rightarrow { y }^{ -1 }={ C }_{ 1 }{ x }^{ 5 }+{ C }_{ 2 }{ x }^{ 3 }+{ C }_{ 3 }{ x }^{ 2 }+{ C }_{ 4 }x+{ C }_{ 5 }$$
  • Question 2
    1 / -0
    Solve:
    $$\displaystyle \frac {dy}{dx}\, +\, \sin\, \displaystyle \frac {x+y}{2}\, =\, \sin\, \displaystyle \frac {x-y}{2}$$
    Solution
    $$\displaystyle \frac {dy}{dx}\, +\, \sin \, \displaystyle \frac {x+y}{2}\, =\, \sin \, \displaystyle \frac {x-y}{2}$$
    we know $$\sin (A-B)-\sin (A+B)=-\cos A\sin B$$
    $$\Rightarrow\, \displaystyle \frac {dy}{dx}\, =\, -\, 2\, \cos \, \displaystyle \frac {x}{2}\, \sin  \displaystyle \frac {y}{2}$$
    $$\Rightarrow\, \text{cosec}\, \displaystyle \frac {y}{2}\, dy\, =\, -2\, \cos \, \displaystyle \frac {x}{2}\, dx$$
    On integration we get
    $$\Rightarrow\, 2\, \left (\ln  \left | \tan \, \displaystyle \frac {y}{4} \right | \right )\, =\, 2\, \left (-2\, \sin \, \displaystyle \frac {x}{2}\right )\, +\, c$$
    $$\Rightarrow\, \ln  \left |\tan  \, \displaystyle \frac {y}{4} \right |\, =\, c_1\, -2\, \sin \, \displaystyle \frac {x}{2}$$
  • Question 3
    1 / -0
    Solve:
    $$\displaystyle \frac {dy}{dx}\, =\, \displaystyle \frac {x(2\ln\, x\, +\, 1)}{\sin\, y\, +\, y\cos\, y}$$
    Solution
    Given $$\displaystyle \frac {dy}{dx}\, =\, \displaystyle \frac {x(2\ln\, x\, +\, 1)}{\sin\, y\, +\, \cos\, y}$$
    $$\dfrac { dy }{ dx } (\sin\, y\, +\, y\cos\, y)\, =\, 2x\ln\, x\, +\, x$$
     $$\dfrac { dy }{ dx } \times \sin\, y\, +\, y\times \dfrac { d(\sin y) }{ dx } \, =\dfrac { \, { d(x }^{ 2 }) }{ dx } \times \ln\, x\, +\, { x }^{ 2 }\times \dfrac { d(\ln x) }{ dx } $$
     On integration
     $$y\sin y={ x }^{ 2 }\ln x+c$$
  • Question 4
    1 / -0
    Solve the following differential equation:

    $$\dfrac{dy}{dx}=(1+x^2)(1+y^2)$$
    Solution
    The given differential eqaution :
    $$\dfrac{dy}{dx}=(1+x^2)(1+y^2)$$

    $$\dfrac{dy}{1+y^2}=(1+x^2) \ dx$$

    Integrating both sides,
    $$\int \dfrac{dy}{1+y^2}=\int (1+x^2) \ dx$$

    $$\tan^{-1}y = x+\dfrac{x^3}{3}+C$$
  • Question 5
    1 / -0
    The equation of the curve in which the portion of the tangent included between the coordinate axes is bisected at the point of contact is:
    Solution
    Let the equation of curve be $$y=f(x)$$
    Let $$P(x,y)$$ be any point on the curve.
    Equation of tangent at $$P(x,y)$$ is 
    $$Y-y=y'(X-x)$$
    $$\Rightarrow y'X-Y=xy'-y$$
    $$\Rightarrow \displaystyle \dfrac{X}{\dfrac{xy'-y}{y'}}+\dfrac{Y}{y-xy'}=1$$
    So, the intercepts of the tangent on the axis are 
    $$\dfrac{xy'-y}{y'}$$ and $$y-xy'$$
    So, the point $$A$$ on $$x$$-axis is $$(\dfrac{xy'-y}{y'} ,0)$$ and $$B$$ on $$y$$-axis is $$(0,y-xy')$$.
    Now, $$P$$ is mid-point of $$AB$$ 
    So coordinates of $$P$$ are $$(\dfrac{xy'-y}{2y'}, \dfrac{y-xy'}{2})$$
    $$\Rightarrow x=\dfrac{xy'-y}{2y'}$$ and $$y=\dfrac{y-xy'}{2}$$
    $$\Rightarrow \displaystyle xy'-y=2y'x $$ and $$xy'-y=-2y$$
    $$\Rightarrow 2y'x=-2y$$
    $$\Rightarrow \dfrac{dy}{y}=-\dfrac{dx}{x}$$
    Integrating both sides, we get
    $$\log y=-\log x +\log C$$
    $$\Rightarrow \log xy=\log C$$
    $$\Rightarrow xy=C$$
  • Question 6
    1 / -0
    If $$y=\sin ^{ -1 }{ \left[ \sqrt { x-ax } -\sqrt { a-ax }  \right]  } $$, then $$\cfrac { dy }{ dx } $$ is equal to
    Solution
    Given $$y=\sin ^{ -1 }{ \left[ \sqrt { x-ax } -\sqrt { a-ax }  \right]  } $$

    Put $$x=\sin ^{ 2 }{ \theta  } ,a=\sin ^{ 2 }{ \phi  } $$ then

    $$y=\sin ^{ -1 }{ \left[ \sqrt { \sin ^{ 2 }{ \theta  } -\sin ^{ 2 }{ \phi  } \sin ^{ 2 }{ \theta  }  } -\sqrt { \sin ^{ 2 }{ \phi  } -\sin ^{ 2 }{ \phi  } \sin ^{ 2 }{ \theta  }  }  \right]  } $$

    $$=\sin ^{ -1 }{ \left[ \sqrt { \sin ^{ 2 }{ \theta  } (1-\sin ^{ 2 }{ \phi  } ) } -\sqrt { \sin ^{ 2 }{ \phi  } (1-\sin ^{ 2 }{ \theta  } ) }  \right]  } $$

    $$=\sin ^{ -1 }{ \left[ \sin { \theta  } \cos { \phi  } -\sin { \phi  } \cos { \theta  }  \right]  } $$

    $$=\sin ^{ -1 }{ \left[ \sin { \left( \theta -\phi  \right)  }  \right]  } =\theta -\phi $$

    $$=\sin ^{ -1 }{ \sqrt { x }  } -\sin ^{ -1 }{ \sqrt { a }  } $$

    $$\therefore \cfrac { dy }{ dx } =\cfrac { 1 }{ \sqrt { 1-{ \left( \sqrt { x }  \right)  }^{ 2 } }  } .\cfrac { 1 }{ 2\sqrt { x }  } =\cfrac { 1 }{ \sqrt { 1-x }  } .\cfrac { 1 }{ 2\sqrt { x }  } $$
  • Question 7
    1 / -0
    The solution of $$\cfrac { dy }{ dx } ={ 2 }^{ y-x }$$ is
    Solution
    Given $$\cfrac { dy }{ dx } ={ 2 }^{ y-x }$$

    $$\Rightarrow { 2 }^{ -y }dy={ 2 }^{ -x }dx$$

    On integrating both sides, we get

    $$\cfrac { { 2 }^{ -y } }{ \log { 2 }  } (-1)=\cfrac { { 2 }^{ -x } }{ \log { 2 }  } (-1)+{ c }_{ 1 }$$

    $$\Rightarrow -\cfrac { { 2 }^{ -y } }{ \log { 2 }  } =\cfrac { -{ 2 }^{ -x } }{ \log { 2 }  } +{ c }_{ 1 }$$

    $$\Rightarrow -{ 2 }^{ -y }=-{ 2 }^{ -x }+{ c }_{ 1 }\log { 2 } $$

    $$\therefore \quad \cfrac { 1 }{ { 2 }^{ x } } -\cfrac { 1 }{ { 2 }^{ y } } =c\quad \left( c={ c }_{ 1 }\log { 2 }  \right) $$
  • Question 8
    1 / -0
    A curve, whose concavity is directly proportional to the logarithm of its x-coordinate at any point of curve, is given by:
    Solution
    Let $$P(x,y)$$ be any point on the curve
    According to given conditon,
    $$\displaystyle \frac{d^2 y}{dx^2}=k\log x$$        ....(1)
    where $$k$$ is constant of proportionality.
    Integrating both sides of eqn (1),
    $$\displaystyle \frac{dy}{dx}=k\int \log x.1 dx$$
    $$\displaystyle \frac{dy}{dx}=k(x\log x-x)+c_2$$
    Again integrating, we get
    $$y=k \int {x\log x} -k\int xdx +\int c_2 dx$$

    $$\Rightarrow \displaystyle y=k [\log x \frac{x^2}{2}-\int \frac{x^2}{2} \frac{1}{x}dx]-k\frac{x^2}{2}+c_2 x+c_3$$

    $$\Rightarrow \displaystyle  y=\frac { k }{ 4 } [2{ x }^{ 2 }\log  x-x^{ 2 }-2x^{ 2 }]+c_{ 2 }x+c_{ 3 }$$

    $$\Rightarrow \displaystyle  y={ c }_{ 1 }[2{ x }^{ 2 }\log  x-3x^{ 2 }]+c_{ 2 }x+c_{ 3 }$$
  • Question 9
    1 / -0
    The order of the differential equation whose solution is $$y=a\cos { x } +b\sin { x } +c{ e }^{ -x }$$, is
    Solution
    Given DE has 3 different independent constants $$a,b,c$$

    Therefore order of given differential equation is $$3$$
  • Question 10
    1 / -0
    $$\cfrac { d }{ dx } \left[ \tan ^{ -1 }{ \cfrac { \sqrt { 1+{ x }^{ 2 } } -1 }{ x }  }  \right] $$ is equal to
    Solution
    Let $$y=\cfrac { d }{ dx } \left[ \tan ^{ -1 }{ \cfrac { \sqrt { 1+{ x }^{ 2 } } -1 }{ x }  }  \right] $$

    Put $$x=\tan { \theta  } $$

    $$\Rightarrow \theta =\tan ^{ -1 }{ x } $$

    Then, 
    $$y=\cfrac { d }{ dx } \left[ \tan ^{ -1 }{ \cfrac { \sqrt { 1+\tan ^{ 2 }{ \theta  }  } -1 }{ \tan { \theta  }  }  }  \right] $$

    $$=\cfrac { d }{ dx } \left[ \tan ^{ -1 }{ \cfrac { \sqrt { \sec ^{ 2 }{ \theta  }  } -1 }{ \tan { \theta  }  }  }  \right] $$

    $$=\cfrac { d }{ dx } \left[ \tan ^{ -1 }{ \cfrac { \cfrac { 1 }{ \cos { \theta  }  } -1 }{ \cfrac { \sin { \theta  }  }{ \cos { \theta  }  }  }  }  \right] $$

    $$=\cfrac { d }{ dx } \left[ \tan ^{ -1 }{ \left( \cfrac { 1-\cos { \theta  }  }{ sin\theta  }  \right)  }  \right] $$

    $$=\cfrac { d }{ dx } \tan ^{ -1 }{ \left( \tan { \cfrac { \theta  }{ 2 }  }  \right)  } $$

    $$=\cfrac { d }{ dx } \left( \cfrac { \theta  }{ 2 }  \right) =\cfrac { 1 }{ 2 } \cfrac { d }{ dx } \left( \tan ^{ -1 }{ x }  \right) $$

    $$=\cfrac { 1 }{ 2 } \cfrac { 1 }{ \left( 1+{ x }^{ 2 } \right)  } $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now