Self Studies

Differential Equations Test - 51

Result Self Studies

Differential Equations Test - 51
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$y=y\left( x \right) $$ and $$\displaystyle \frac { 2+\sin { x }  }{ y+1 } \left( \frac { dy }{ dx }  \right) =-\cos { x } ,y\left( 0 \right) =1$$, then find the value of $$\displaystyle y\left( \frac { \pi  }{ 2 }  \right) $$.
    Solution
    $$\displaystyle \left( \frac { dy }{ dx }  \right) \frac { 2+\sin { x }  }{ y+1 } =-\cos { x } ,y\left( 0 \right) =1$$
    $$\displaystyle \Rightarrow \frac { dy }{ \left( 1+y \right)  } =-\frac { \cos { x }  }{ 2+\sin { x }  } dx$$
    Integrating both sides $$\Rightarrow \ln { \left( 1+y \right)  } =-\ln { \left( 2+\sin { x }  \right)  } +c$$
    Substitute $$x=0$$ and $$y=1$$
    $$\Rightarrow \ln { 2 } =-\ln { 2 } +c\Rightarrow c=\ln { 4 } $$
    Substitute $$\displaystyle x=\frac { \pi  }{ 2 } ,\ln { \left( 1+y \right)  } =\ln { 3 } +\ln { 4 } =\ln { \frac { 4 }{ 3 }  } \Rightarrow y=\frac { 1 }{ 3 } $$
  • Question 2
    1 / -0
    Solution of differential equation $$sec\, x\, dy - cosec\, y \,dx = 0$$ is
    Solution
    $$sec\,x\,dy-cosec\,y-dx = 0 $$
    $$ \dfrac{dy}{cos\,x} = \dfrac{dx}{sin\,y} $$
    By variable separable from 
    $$\displaystyle sin\,y\,dy = cos\,x\,dx $$ 
    integrating,
    $$ \displaystyle \int siny\,dy = \int cosx\,dx $$
    $$ -cos\,y = sin\,x+c $$ 
    $$ \boxed { sinx+cosy+c =0} $$
    or 
    $$ \boxed {sinx+cosy = c} $$ 

  • Question 3
    1 / -0
    The solution of the differential equation $$\dfrac { dy }{ dx } =2{ e }^{ x-y }+{ x }^{ 2 }{ e }^{ -y }$$ is
    Solution
    Given, $$\dfrac { dy }{ dx } =2{ e }^{ x-y }+{ x }^{ 2 }{ e }^{ -y }$$

    $$\Rightarrow \dfrac { dy }{ dx } =2{ e }^{ x }\cdot \dfrac { 1 }{ { e }^{ y } } +{ x }^{ 2 }\cdot \dfrac { 1 }{ { e }^{ y } }$$

    $$ \Rightarrow \dfrac { dy }{ dx } =\dfrac { 1 }{ { e }^{ y } } \left( 2{ e }^{ x }+{ x }^{ 2 } \right)$$

    $$ \Rightarrow { e }^{ y }dy=\left( 2{ e }^{ x }+{ x }^{ 2 } \right) dx$$

    On integrating both sides, we get

    $$\displaystyle\int { { e }^{ y }dy } =\displaystyle\int { \left( 2{ e }^{ x }+{ x }^{ 2 } \right) dx }$$

    $$ \Rightarrow { e }^{ y }=2{ e }^{ x }+\dfrac { { x }^{ 3 } }{ 3 } +C$$
    which is the required solution.
  • Question 4
    1 / -0
    General solution of $$y\dfrac{dy}{dx}+by^2 = a \cos x, 0 < x < 1$$ is:
    (here $$c$$ is an arbitrary constant)
    Solution
    Let us take $$y^{2}=t$$ , which means $$dt=2ydy$$

    Given equation will transform into $$\cfrac{dt}{dx}+2bt=2a\cos x$$
    The integration factor is $$e^{2bx}$$

    The general solution is $$ te^{2bx} = \displaystyle \int  { 2a\cos x{ e }^{ 2bx }dx } +c$$

    $$\Rightarrow te^{2bx}=\cfrac{4ab\cos x+2a\sin x}{4b^{2}+1}e^{2bx}+c$$

    $$\Rightarrow (4b^{2}+1)y^{2}=2a(\sin x+2b\cos x)+Ce^{-2bx}$$

    Therefore the correct option is $$B$$
  • Question 5
    1 / -0
    The solution of the differential equation $$\displaystyle\frac{d^{2}y}{dx^2}+3y=-2x$$ is.
    Solution

    $$\dfrac { { d }^{ 2 }y }{ d{ x }^{ 2 } } +3y=-2x.......(i)$$

    This is second order non homogeneous differential equation.

    Its solution is given as $$CF+PI$$

    For $$CF$$ part

    $$\dfrac { { d }^{ 2 }y }{ d{ x }^{ 2 } } +3y=0....(ii)\\ y={ { { c }_{ 1 } }e }^{ mx }\\ \dfrac { dy }{ dx } ={ c }_{ 1 }m{ e }^{ mx }\\ \dfrac { { d }^{ 2 }y }{ d{ x }^{ 2 } } ={ c }_{ 1 }{ m }^{ 2 }{ e }^{ mx }$$

    Substituting in $$(ii)$$, we get
    $${ m }^{ 2 }{ e }^{ mx }+3{ e }^{ mx }=0\\ { e }^{ mx }({ m }^{ 2 }+3)=0\\ { m }^{ 2 }+3=0\\ \Rightarrow m=\sqrt { -3 } \\ m=i\sqrt { 3 } \\ y=c_{1}{ e }^{ i\sqrt { 3 } x }={ c }_{ 1 }(\cos { \sqrt { 3 } x } +i\sin { \sqrt { 3 } x } )\\ y={ c }_{ 1 }\cos { \sqrt { 3 } x } +{ c }_{ 2 }\sin { \sqrt { 3 } x } \quad \quad $$

    For $$PI$$ part

    Let $$y=cx+d$$

    $$\dfrac { dy }{ dx } =c\\ \dfrac { { d }^{ 2 }y }{ d{ x }^{ 2 } } =0$$

    Substituting in $$(i)$$

    $$0+3(cx+d)=-2x\\ 3cx+3d=-2x$$

    Comparing both sides

    $$c=-\dfrac { 2 }{ 3 } ,d=0$$

    So solution for $$PI$$ part is 

    $$y=-\dfrac { 2 }{ 3 } x$$

    General solution is $$CF+PI$$

    $${ c }_{ 1 }\cos { \sqrt { 3 } x } +{ c }_{ 2 }\sin { \sqrt { 3 } x } -\dfrac { 2 }{ 3 } x\quad $$

  • Question 6
    1 / -0
    The general solution of the differential equation $$\displaystyle \frac{dy}{dx}+\frac{y}{x}=3x$$ is.
    Solution
    Comparing above equation with first order linear differential equation $$\dfrac{dy}{dx}+Py=Q$$
    We get $$P=\dfrac{1}{x}$$ and $$Q=3x$$

    So integration  factor $$I.F. =e^{\int Pdx}=e^{\int (1/x)dx}=e^{\ln x}=x$$
    Hence solution is given by, $$y(I.F.)=\displaystyle \int Q(I.F.)d x$$
    $$\Rightarrow xy=\displaystyle \int 3x^2dx$$
    $$\Rightarrow xy=x^3+c$$
    $$\Rightarrow y=x^2+\dfrac{c}{x}$$
  • Question 7
    1 / -0
    The differential equation $$y\dfrac{dy}{dx}=a-x$$ represents
    Solution

    Given: $$y\dfrac { dy }{ dx } =a-x$$

    Integrating on both sides

    $$\int { ydx } =\int { adx } -\int { xdx } $$

    $$\dfrac { { y }^{ 2 } }{ 2 } =ax-\dfrac { { x }^{ 2 } }{ 2 } +c$$

    $${ x }^{ 2 }+{ y }^{ 2 }-2ax+c=0$$

    $${ (x-a) }^{ 2 }+{ y }^{ 2 }=r^{ 2 }$$

    Hence family of circles with centre on x axis

  • Question 8
    1 / -0

     A particle, initially at origin moves along $$x$$ axis according to the rule $$\dfrac{dx}{dt}=x+4$$. The time taken by the particle to traverse a distance of $$96$$ units is

    Solution
    Given $$\frac{dx}{dt}=x+4$$
    $$\Rightarrow \frac{dx}{x+4}=dt$$
    By applying integration on both sides , we get $$\ln{(x+4)}=t+k$$
    $$\Rightarrow x=e^{t}-4+C$$
    At $$t=0$$ , $$x=0$$ , which implies $$C=3$$
    Therefore the equation becomes $$x=e^{t}-1$$
    Given that $$x=96$$ , which implies $$t=\ln{97}$$
  • Question 9
    1 / -0
    Consider the differential equation $${ y }^{ 2 }dx+\left( x-\cfrac { 1 }{ y }  \right) dy=0$$. If $$y(A)=1$$, then $$x$$ is given by
  • Question 10
    1 / -0
    The solution of $$e^{2x-3y}dx+e^{2y-3x}dy=0$$ is
    Solution

    $${ e }^{ 2x-3y }dx + { e }^{ 2x-3y }dy=0\\ \Rightarrow \cfrac { { e }^{ 2x } }{ { e }^{ 3y } } dx+\cfrac { { e }^{ 2y } }{ { e }^{ 3x } } dy=0 \\ \Rightarrow \cfrac { { e }^{ 5x }dx + { e }^{ 5y }dy }{ { e }^{ 3y }{ e }^{ 3x } } =0\\ \Rightarrow { e }^{ 5x }dx + { e }^{ 5y }dy=0$$

    Integrating n both sides.

    $$\cfrac { { e }^{ 5x } }{ 5 } +\cfrac { { e }^{ 5y } }{ 5 } =k\\ \Rightarrow { e }^{ 5x }+{ e }^{ 5y }=k$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now