Self Studies

Differential Equations Test - 53

Result Self Studies

Differential Equations Test - 53
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$y_1(x)$$ is a solution of the differential equation $$\frac{dy}{dx} + f(x) + y = 0$$, then a solution of differential equation $$\frac{dy}{dx} + f(x) + y = r (x)$$ is
    Solution

  • Question 2
    1 / -0
    Solution of differential equation $$\frac{dy}{dx} = sin(x+y) + cos(x+y)$$ is
    Solution

  • Question 3
    1 / -0
    Solution of differential equation $$\dfrac{dy}{dx} = \sin (x+y) + \cos(x+y)$$ is
    Solution

  • Question 4
    1 / -0
    The general solution of $$\dfrac {dy}{dx} = \dfrac {ax + h}{by + k}$$ represents a circle only when
    Solution
    Given that 
    $$ \dfrac{dy}{dx} = \dfrac{ax + h}{by + k}$$

    $$ \Rightarrow  dy \; (by + k) = dx \; (ax + h)$$

    Integrating LHS and RHS,

    $$ b\dfrac{y^2}{2} + ky + c = a\dfrac{x^2}{2} + h x + c $$

    $$\Rightarrow  ax^2 - b y^2 + 2hx - 2ky + c = 0 $$

    The general equation of a cirlce is given as:
    $$ x^2 + y^2 + 2gx + 2fy + c = 0$$

    Upon comparing the obtained equation with the general equation of a circle,
    $$ ax^2 - b y^2 + 2hx - 2ky + c = 0 $$
    represents a cirlce if
    $$ a = -b \neq 0 $$.
  • Question 5
    1 / -0
    $$Solution\quad of\quad the\quad equation:\quad (1-{ x }^{ 2 })dy\quad +\quad xydx=\quad x{ y }^{ 2 }dx$$
    Solution
    $$(1-x^{2})dy+xydx=xy^{2}dx$$
    Dividing by $$y^{2}dx$$, we get(and also divisible by $$(1-x^{2})$$
    $$\cfrac{1}{y^{2}}\cfrac{dy}{dx}+\cfrac{x}{1-x^{2}}\cfrac{1}{y}=\cfrac{x}{1-x^{2}}$$
    Now by putting $$\cfrac{-1}{y}=z$$
    $$\cfrac{1}{y^{2}}dy=dz$$
    Therefore, equation becomes
    $$\cfrac{dz}{dx}-\cfrac{x}{1-x^{2}}dz=\cfrac{x}{(1-x^{2})}$$
    Now ,$$IF=e^{\int\cfrac{-x}{1-x^{2}}}=e^{+\cfrac{1}{2}\log(1-x^{2})}=\sqrt{1-x^{2}}$$
    Multiplying by IF , we get
    $$\cfrac{d}{dx}((\sqrt{1-x^{2}})z)$$=$$\cfrac{x}{\sqrt{1-x^{2}}}$$
    Now integrating on both the sides and taking
    $$\sqrt{1-x^{2}}=P$$ on RHS, we get
    $$\cfrac{1}{2\sqrt{1-x^{2}}}\times(-2x)dx=dP$$
    $$\cfrac{-x}{\sqrt{1-x^{2}}}dx=dP$$
    $$\cfrac{x}{\sqrt{1-x^{2}}}dx=-dP$$
    $$\int d((1-\sqrt{1-x^{2}})dz)=-\int-dP$$
    $$(1-\sqrt{1-x^{2}})z=-P+C=-\sqrt{1-x^{2}}+C$$
    $$(\sqrt{1-x^{2})}(z+1)=C$$
    $$\int(\sqrt{1-x^{2})}(\cfrac{-1}{y}+1)=C$$
    Now squaring on both the sides, we get
    $$(y-1)^{2}(1-x^{2})=C^{2}y^{2}$$
  • Question 6
    1 / -0
    The solution of the differential equation $$x^{2} \dfrac{dy}{dx} = x^{2} + xy + y^{2}$$ is-
    Solution
    $$x^{2}\cfrac{dy}{dx}=x^{2}+xy+y^{2}$$
    $$\cfrac{dy}{dx}=1+\cfrac{y}{x}+(\cfrac{y}{x})^{2}$$
    Let $$\cfrac{y}{x}=v$$
    $$y=vx$$
    $$\cfrac{dy}{dx}=v+x\cfrac{dv}{dx}$$
    $$v+x\cfrac{dv}{dx}=1+v+v^{2}$$
    $$x\cfrac{dv}{dx}=1+v^{2}$$
    $$\cfrac{dv}{1+v^{2}}=\cfrac{dx}{x}$$
    $$\tan^{-1}\,v=\log x+C$$
    $$\tan^{-1}\,(\cfrac{y}{x})=\log x+C$$
  • Question 7
    1 / -0
    What is the solution of $$(1+2x)dy-(1-2y)dx=0$$?
    Solution
    Consider $$(1+2x)dy-(1-2y)dx=0$$

    $$\Rightarrow (1+2x)dy=(1-2y)dx$$

    $$\Rightarrow \dfrac{dx}{1+2x}=\dfrac{dy}{1-2y}$$

    $$\Rightarrow \int \dfrac{dx}{1+2x}=\int \dfrac{dy}{1-2y}$$

    $$\Rightarrow \dfrac{1}{2}log(1+2x)=-\dfrac{1}{2}log(1-2y)+\dfrac{1}{2}log\:c$$

    $$\Rightarrow log(1+2x)+log(1-2y)=log\:c$$

    $$\Rightarrow (1+2x)(1-2y)=c$$

    $$\Rightarrow x-y-2xy=c$$

  • Question 8
    1 / -0
    Let $$f(x)$$ be a differential function and satisfy $$f(0) =2$$, and $$f'(x) = f(x)$$ . Find 
    Solution
    $$f^{'}(x)=f(x)$$
    $$\Rightarrow \cfrac{dy}{dx}=y$$
    $$\Rightarrow\cfrac{dy}{y}=dx$$
    Now on integrating, we get
    $$\log y=x+C$$
    $$f(0)=2\Rightarrow C=\log 2$$
    $$\log y=x+C=x+\log2$$
    $$y=2e^{x}$$
    Therefore, we can say that range of f(x) is $$(0,\infty )$$.
  • Question 9
    1 / -0
    The solution of $$\left( {\cos ecx\log y} \right)dy + \left( {{x^2}y} \right)dx = 0$$ is
    Solution
    $$\left( {\mathrm cos ec \ x\log y} \right)dy + \left( {{x^2}y} \right)dx = 0$$ 
    $$\cfrac{-\log y}{y}\,dy=\cfrac{x^{2}dx}{\csc x}=\sin x\, x^{2}dx$$
    Integrating on both the sides and using Product Formula in RHS; for LHS,
    Let $$\log y=z$$
    $$\cfrac{1}{y}dy=dz$$
    $$\int -z\, dz=x^{2}\int\sin x-\int(\cfrac{d}{dx}x^{2}\int \sin x)dx$$
    $$\cfrac{-z^{2}}{2}=-x^{2}\,\cos x+\int\,2x\,\cos x$$
    $$\cfrac{-z^{2}}{2}=-x^{2}\,\cos x+2[x\int \cos x-\int(\cfrac{dx}{dx}\int\cos x) dx]$$
    $$\cfrac{-z^{2}}{2}=-x^{2}\,\cos x+2x\sin x-2\int \sin x$$
    $$\cfrac{(-\log y^{2})}{2}=-x^{2}\,\cos x+2x\sin x+2 \cos x+C$$
    $$(2-x^{2})\cos x+\cfrac{(log\, y)^{2}}{2}+2x\sin x=C$$
  • Question 10
    1 / -0
    What is the solution of the differential equation $$xdy+ydx=0$$
    Solution
    Consider $$xdy+ydx=0$$

    $$\Rightarrow xdy=-ydx$$

    $$\Rightarrow \dfrac{1}{y}dy=-\dfrac{1}{x}dx$$

    Integrating both sides we get

    $$\Rightarrow ln\:|y|=-ln\:|x|+C$$

    $$\Rightarrow ln\:|y|+ln\:|x|=C$$

    $$\Rightarrow ln(|x||y|)=C$$

    $$\Rightarrow |x||y|=e^C$$

    $$\Rightarrow xy=e^C$$

    Let $$e^C=c$$ we get 

    $$\Rightarrow xy=c$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now