Self Studies

Differential Eq...

TIME LEFT -
  • Question 1
    1 / -0

    Solve: $$\dfrac{{dy}}{{dx}} = 1 + x + y + xy$$

  • Question 2
    1 / -0

    The function f(x) satisfying the equation, $$f^2(x)+4f(x)\cdot f(x)+[f(x)]^2=0$$.where CCis an arbitrary constant.

  • Question 3
    1 / -0

    $$\frac{{dy}}{{dx}} + \frac{{{y^2} + y + 1}}{{{x^2} + x + 1}} = 0$$

  • Question 4
    1 / -0

    If $$y={e}^{4x}+2{e}^{-x}$$ satisfies the relation $$\dfrac {{d}^{3}y}{{dx}^{3}}+A\dfrac {dy}{dx}+By=0$$,then value of $$A$$ and $$B$$ respectively are 

  • Question 5
    1 / -0

    The solution of the differential equation $$(1+y^{2})+(x-e^{\tan -1}y)\dfrac {dy}{dx}=0$$, is-

  • Question 6
    1 / -0

    The solution of $$\dfrac {dy}{dx}+\dfrac {y}{x}=x^{2}y^{6}$$ is

  • Question 7
    1 / -0

    The solution of the differential equation $$x^2\dfrac{dy}{dx}\cos\left(\dfrac{1}{x}\right) - y \sin\left(\dfrac{1}{x}\right) = -1 ; where \  y \rightarrow -1 \ as \ x \rightarrow \infty$$ is 

  • Question 8
    1 / -0

    The general solution of differential equation $$\dfrac{dy}{dx}=\sin^{3}{x}\cos^{2}{x}+xe^{x}$$

  • Question 9
    1 / -0

    The value of $$\displaystyle \lim_{x \rightarrow \infty}$$ y(x) obtained from the differential equation $$\dfrac{dy}{dx} = y - y^2$$, where y(0) = 2 is 

  • Question 10
    1 / -0

    Solution of $$\left(\dfrac{x+y-a}{x+y-b}\right)\left(\dfrac{dy}{dx}\right)=\left(\dfrac{x+y+a}{x+y+b}\right)$$.

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now