Self Studies

Differential Equations Test - 55

Result Self Studies

Differential Equations Test - 55
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The solution of the differential equation $$(3xy+y^{2})dx+(x^{2}+xy)dy=0$$ is
    Solution

  • Question 2
    1 / -0
    The solution of the differential equation $$\dfrac{dy}{dx} = \dfrac{x^2 + y^2 + 1}{2xy}$$ satisfying $$y (1) = 1$$, is
    Solution
    $$\dfrac{dy}{dx}=\dfrac{x^2+y^2+1}{2xy}$$

    $$2y\dfrac{dy}{dx}=x+\dfrac{y^2}{x}+\dfrac{1}{x}$$

    $$2y\dfrac{dy}{dx}-\dfrac{y^2}{x}=x+\dfrac{1}{x}$$

    $$y^2=u=2y\dfrac{dy}{dx}=\dfrac{du}{dx}$$

    $$\dfrac{du}{dx}-\dfrac{u}{x}=x+\dfrac{1}{x}$$

    $$\dfrac{du}{dx}+Pu=Q$$

    $$\dfrac{1}{x}\dfrac{du}{dx}-\dfrac{u}{x^2}=1+\dfrac{1}{x^2}$$

    $$\int d\left ( \dfrac{u}{x} \right )=\int \left ( 1+ \dfrac{1}{x^2}\right )dx\Rightarrow \dfrac{u}{x} x-x^{-1}+C$$

    $$\Rightarrow \dfrac{y^2}{x}=x-\dfrac{1}{x}+C$$

    $$\Rightarrow y^2=x^{2}-1+x$$
  • Question 3
    1 / -0
    The solution of the differential equation $$\left ({x}^{2}+1\right)\dfrac {dy}{dx}+{y}^{2}+1=0,$$ is  $$\left[ ify\left( 0 \right) =1 \right]$$
    Solution

  • Question 4
    1 / -0
    The solution of differential equation $$\dfrac{dy}{dx} =\dfrac{x(2\ln{x+1})}{\sin{y}+y\cos{y}}$$ is
    Solution
    Equation of family of circle is 
    $$(n+a)^2+(y-a)^2=a^2$$ or 
    $$x^2+y^2+2ax-2ay +a^2$$
    $$=0$$    ------(1)
    Diffentiating , we get
    $$2n+2y \dfrac{dy}{dx}+2a-2a \dfrac{dy}{dx}=0$$
    $$\Rightarrow x+y \dfrac{dy}{dx}=a\left(\dfrac{dy}{dx}-1\right)$$
    $$\Rightarrow a=\dfrac{x+yy^1}{y^1-1}$$
    where $$y^1=\dfrac{dy}{dx}$$
    Substituting the value of a in eq $$(1)$$ and Simplifying
    $$\Rightarrow (xy^1-x+x+yy^1)+(yy^1-y-x-yy^1)^2$$
    $$=(x+(yy^1))^2$$
    $$\Rightarrow (x+y)^2[(y^1)^2+1]=(x+yy^1)^2$$ 
    The given differential equation is :
    $$\dfrac{dy}{dx}=\dfrac{x(2\log x+1)}{\sim y +y \cos y}$$
    $$\Rightarrow (\sin y+y \cos y)dy =x(2\log x+1)dx$$
    $$\Rightarrow \int (\sin y +y \cos y )dy=\int x(2\log x+1)dx$$ integrating both sides 
    $$\Rightarrow -\cos y +y \sin y - \int \sin y \, dy$$
    $$=2\log ^x \dfrac{x^2}{2}-2 \int \dfrac{1}{x} \dfrac{x^2}{2}dx +\dfrac{x^2}{2}$$
    $$\Rightarrow -\cos y + y \sin y + \cos y =x^2 \log x- \dfrac{x^2}{2}+\dfrac{x^2}{2}+c$$
    $$\Rightarrow y \sin y =x^2 \log x +c$$    .......(2)
    It is given that when $$y=\dfrac{\pi}{2},x=1$$
    So, putting  $$y=\dfrac{\pi}{2}, x=1$$ in eq (2),
    $$\Rightarrow \dfrac{\pi}{2} \sin \dfrac{\pi }{2}=1.\log 1+c$$
    $$\Rightarrow c=\dfrac{\pi}{2}$$
    Putting $$c=\dfrac{\pi}{2}$$ in eq (2) we oftain
    $$\boxed{y \sin y =x^2\log x+\dfrac{\pi}{2}}$$

  • Question 5
    1 / -0
    The order of the differential equation satisfying $$\sqrt { 1-{ x }^{ 4 } } +\sqrt { 1-{ y }^{ 4 } } =a\left( { x }^{ 2 }-{ y }^{ 2 } \right) $$ is 
    Solution

  • Question 6
    1 / -0
    Solution of the differential equation $$ye^{x/y}dx=(xe^{\frac {x}{y}}+y^{2})dy(y \neq 0)$$ is ?
    Solution

  • Question 7
    1 / -0
    The D.E whose solution is $$y=a\cos(3x+b)$$ is?
    Solution
    $$y=a\, \cos  \left( { 3x+b } \right)  \\ a,b\, \, are\, \, two\, \, arbitary\, \,  \\ { { constant } }{ { .Then,requiredD-E } } \\ { { are } }\, \, { { insecondorder } }{ { . } } \\ \dfrac { y }{ a } =\cos  \left( { 3x+b } \right) ,\, \, { \cos ^{ -1 }  }\left( { \dfrac { y }{ a }  } \right) =3x+b \\ differentiate\, \, w.r\, \, to\, \, x\, \,  \\ \Rightarrow \dfrac { { d\left( { { { \cos   }^{ -1 } }\dfrac { y }{ a }  } \right)  } }{ { dx } } =\dfrac { { 3dx } }{ { dx } } +\dfrac { { db } }{ { dx } }  \\ \Rightarrow \sqrt { 1-\dfrac { { { y^{ 2 } } } }{ { { a^{ 2 } } } }  } \times \dfrac { 1 }{ a } \dfrac { { dy } }{ { dx } } =3 \\ \Rightarrow \dfrac { { dy } }{ { dx } } =-3a\sqrt { 1-\dfrac { { { y^{ 2 } } } }{ { { a^{ 2 } } } }  }  \\ \Rightarrow \dfrac { { dy } }{ { dx } } =\dfrac { { -3a } }{ a } \sqrt { { a^{ 2 } }-{ y^{ 2 } } }  \\ \Rightarrow \dfrac { { dy } }{ { dx } } =-3\sqrt { { a^{ 2 } }-{ y^{ 2 } } }  \\ \Rightarrow { \left( { \dfrac { { dy } }{ { dx } }  } \right) ^{ 2 } }={ \left( { -3 } \right) ^{ 2 } }{ \left( { \sqrt { { a^{ 2 } }-{ y^{ 2 } } }  } \right) ^{ 2 } } \\ \Rightarrow { \left( { \dfrac { { dy } }{ { dx } }  } \right) ^{ 2 } }=9\sqrt { { a^{ 2 } }-{ y^{ 2 } } }  \\ \Rightarrow { \left( { \dfrac { { dy } }{ { dx } }  } \right) ^{ 2 } }+9{ y^{ 2 } }=9{ a^{ 2 } } \\ again\, \, differentiate\, \, w.r\, to\, \, x \\ \dfrac { { d\left[ { { { \left( { \dfrac { { dy } }{ { dx } }  } \right)  }^{ 2 } } } \right]  } }{ { dx } } +9\dfrac { { d{ y^{ 2 } } } }{ { dx } } =0 \\ \Rightarrow 2\dfrac { { dy } }{ { dx } } .d{ y^{ 2 } }\left( { d{ x^{ 2 } }+18y\dfrac { { dy } }{ { dx } }  } \right) =0 \\ \Rightarrow 2\dfrac { { dy } }{ { dx } } \left( { { d^{ 2 } }y\left( { d{ x^{ 2 } }+9 } \right)  } \right) =0 \\ It\, \, is\, \, required\, \, D.E\, \, $$

  • Question 8
    1 / -0
    The solution of the differential equation $$\dfrac{dy}{dx}+\dfrac{1}{x}\tan y=\dfrac{\tan y \sin y}{{x}^{2}}$$ is 
    Solution

  • Question 9
    1 / -0
    The equation of a curve passing through the point (0, 0) and whose differential equation is $${y'} = {e^x}\sin x$$ is 
    Solution
    given, $$\dfrac {dy}{dx}=e^x\sin x$$
    $$dy=e^x\sin x.dx$$
    $$\displaystyle \int dy=\displaystyle \int e^x\sin x.dx\ \rightarrow $$ integrating both sides.
    $$det,\ \displaystyle \int e^x\sin x\ dx=I----(1)$$
    $$y=\displaystyle \int \underset{f(x)}{\underset{\downarrow}{e^x}}\underset{g(x)}{\underset{\downarrow }{\sin x}}\ dx=I$$
    Since, $$\displaystyle \int f(x)\,g(x)dx =f(x).\displaystyle \int g(x)dx-\displaystyle \int \left [f'(x) \displaystyle \int g(x)dx\right]dx$$
    $$\therefore \ \Rightarrow \ e^x.\displaystyle \int \sin x\ dx-\displaystyle \int \left [e^x.\displaystyle \int \sin x\ dx\right]$$
    $$I=e^x.(-\cos x)-\displaystyle \int e^x.(-\cos x).dx$$
    $$I=-e^x\cos x+\displaystyle \int \underset{f(x)}{\underset{\downarrow}{e^x}}.\underset{g(x)}{\underset{\downarrow}{\cos x}}\ dx$$
    Now apply same formula as above
    $$I=-e^x\cos x.+\left [e^x.\displaystyle \int \cos x.dx-\displaystyle \int (ex.\displaystyle \int \cos x.dx)dx\right]$$
    $$I=-{ e }^{ x }.\cos { x } +\left[ { e }^{ x }.\sin { x } -\underbrace { \displaystyle \int { { e }^{ x }.\sin { x } .dx }  }_{ \left( I \right)  }  \right] $$
    $$I=-e^x\cos x+e^x\sin x-I+c$$
    $$2y=e^x(\sin x-\cos x)+c$$
    Since this curve passes through $$(0,0)$$ therefore
    $$2\times 0=e^0(\sin 0\cos 0)+c$$
    $$c=1$$
    $$\therefore \ $$ equation of curve $$2y=e^x(\sin x-\cos x)+1$$
    $$(2y-1)=e^x(\sin x-\cos x)$$

  • Question 10
    1 / -0
    $$(2y+xy^{3})dx+(x+x^{2}y^{2})dy=0$$ solution of differential equation is 
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now