Equation of family of circle is $$(n+a)^2+(y-a)^2=a^2$$ or
$$x^2+y^2+2ax-2ay +a^2$$
$$=0$$ ------(1)
Diffentiating , we get
$$2n+2y \dfrac{dy}{dx}+2a-2a \dfrac{dy}{dx}=0$$
$$\Rightarrow x+y \dfrac{dy}{dx}=a\left(\dfrac{dy}{dx}-1\right)$$
$$\Rightarrow a=\dfrac{x+yy^1}{y^1-1}$$
where $$y^1=\dfrac{dy}{dx}$$
Substituting the value of a in eq $$(1)$$ and Simplifying
$$\Rightarrow (xy^1-x+x+yy^1)+(yy^1-y-x-yy^1)^2$$
$$=(x+(yy^1))^2$$
$$\Rightarrow (x+y)^2[(y^1)^2+1]=(x+yy^1)^2$$
The given differential equation is :
$$\dfrac{dy}{dx}=\dfrac{x(2\log x+1)}{\sim y +y \cos y}$$
$$\Rightarrow (\sin y+y \cos y)dy =x(2\log x+1)dx$$
$$\Rightarrow \int (\sin y +y \cos y )dy=\int x(2\log x+1)dx$$ integrating both sides
$$\Rightarrow -\cos y +y \sin y - \int \sin y \, dy$$
$$=2\log ^x \dfrac{x^2}{2}-2 \int \dfrac{1}{x} \dfrac{x^2}{2}dx +\dfrac{x^2}{2}$$
$$\Rightarrow -\cos y + y \sin y + \cos y =x^2 \log x- \dfrac{x^2}{2}+\dfrac{x^2}{2}+c$$
$$\Rightarrow y \sin y =x^2 \log x +c$$ .......(2)
It is given that when $$y=\dfrac{\pi}{2},x=1$$
So, putting $$y=\dfrac{\pi}{2}, x=1$$ in eq (2),
$$\Rightarrow \dfrac{\pi}{2} \sin \dfrac{\pi }{2}=1.\log 1+c$$
$$\Rightarrow c=\dfrac{\pi}{2}$$
Putting $$c=\dfrac{\pi}{2}$$ in eq (2) we oftain
$$\boxed{y \sin y =x^2\log x+\dfrac{\pi}{2}}$$