Self Studies

Mix Test 2

Result Self Studies

Mix Test 2
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    \(sin[\frac{\pi}{3}-sin^{-1}(-\frac{1}{2})]\) is equal to:

    Solution

    \(sin[\frac{\pi}{3}-(\frac{-\pi}{6})]=sin(\frac{\pi}{2})=1\)

  • Question 2
    1 / -0

    The value of k (k < 0) for which the function f defined as

    \(f(x)=\begin{cases}\frac{1-cos\,kx}{xsin\,x},&x\neq0\\\frac{1}{2},&x=0\end{cases}\)

    is continuous at x = 0 is:

    Solution

    \(\underset{x\rightarrow0}{lim}\left(\frac{1-cos\,kx}{xsin\,x}\right)=\frac{1}{2}\)

    \(\Rightarrow\underset{x\rightarrow0}{lim}\left(\frac{2sin^2\frac{kx}{2}}{xsin\,x}\right)=\frac{1}{2}\)

    \(\Rightarrow\underset{x\rightarrow0}{lim}2\left(\frac{k}{2}\right)^2\left(\cfrac{sin\frac{kx}{2}}{\frac{kx}{2}}\right)^2\left(\frac{x}{sinx}\right)=\frac{1}{2}\)

    \(\Rightarrow k^2=1\Rightarrow k=\pm1\) \(but\,k<0\)

    \(\Rightarrow k=-1\)

  • Question 3
    1 / -0

    If \(A=[a_{ij}]\) is a square matrix of order 2 such that \(a_{ij}=\begin{cases}1,&when\,i\neq j\\0,&i=j\end{cases},\) then \(A^2\) is:

    Solution

    \(A=\begin{bmatrix}0&1\\1&0\end{bmatrix}\)

    \(A^2=\begin{bmatrix}1&0\\0&1\end{bmatrix}\)

  • Question 4
    1 / -0

    The set of values of k, for which \(A=\begin{bmatrix}k&8\\4&2k\end{bmatrix}\) is a singular matrix is:

    Solution

    As A is singular matrix

    \(\Rightarrow|A|=0\)

    \(\Rightarrow 2k^2-32=0\Rightarrow k=\pm4\)

    Hence, the set of values of k for which the given matrix A is singular is {-4, 4}

  • Question 5
    1 / -0

    Given that A is a square matrix of order 3 and |A| = -4, then | adj A | is equal to:

    Solution

    \(as\,|adj\,A|=|A|^{n-1},\) where n is order of matrix A

    Therefore, \(|adj A|=(-4)^2\) = 16

  • Question 6
    1 / -0

    A relation R in set A = {1,2,3} is defined as R = {(1, 1), (1, 2), (2, 2), (3, 3)}. Which of the following ordered pair in R shall be removed to make it an equivalence relation in A?

    Solution

    (1, 2)

  • Question 7
    1 / -0

    If \(\begin{bmatrix}2a+b&a-2b\\5c-d&4c+3d\end{bmatrix}=\begin{bmatrix}4&-3\\11&24\end{bmatrix},\) then value of a + b – c + 2d is:

    Solution

    \(\begin{cases}2a+b=4\\a-2b=-3\\5c-d=11\\4c+3d=24\end{cases}\) \(\Rightarrow{a=1\\b=2\\c=3\\d=4}\)

    \(\therefore a+b-c+2d=8\)

  • Question 8
    1 / -0

    The point at which the normal to the curve \(y=x+\frac{1}{x},\) x > 0 is perpendicular to the line 3x – 4y – 7 = 0 is:

    Solution

    \(f(x)=x+\frac{1}{x},x>0\) \(\Rightarrow f'(x)=1-\frac{1}{x^2}=\frac{x^2-1}{x^2},x>0\)

    As normal to \(f(x)\,is\perp\) to given line

    \(\Rightarrow(\frac{x^2}{1-x^2})\times\frac{3}{4}=-1\,(m_1.m_2=-1)\)

    \(\Rightarrow x^2=4\Rightarrow x=\pm2\)

    But x > 0, \(\therefore x=2\)

    Therefore point \(=(2,\frac{5}{2})\)

  • Question 9
    1 / -0

    \(sin(tan^{-1}x),\) where |x| < 1, is equal to:

    Solution

    \(sin(tan^{-1}x)=sin\left[sin^{-1}\left(\frac{x}{\sqrt{1+x^2}}\right)\right]\) \(=\frac{x}{\sqrt{1+x^2}}\)

  • Question 10
    1 / -0

    Let the relation R in the set \(A=\{x\in Z:0\leq x\leq12\},\) given by R = {(a, b) : |a – b| is a multiple of 4}. Then [1], the equivalence class containing 1, is:

    Solution

    \(\because |1-1|=0\) which is a multiple of 4

    Therefore, \((1, 1) \in R\)

    and \(|1-5|=4\) which is a multiple of 4

    Therefore, \((1, 5) \in R\)

    Also \(|1-9|=8\) which is a multiple of 4

    Therefore, \((1, 9) \in R\)

    Since, \((1, 1), (1, 5), (1, 9) \in R\)

    Therefore, the equivalence class of 1 is [1] = {1, 5, 9}

  • Question 11
    1 / -0

    If \(e^x+e^y=e^{x+y},\) then \(\frac{dy}{dx}\) is:

    Solution

    \(e^x+e^y=e^{x+y}\)

    \(\Rightarrow e^{-y}+e^{-x}=1\)

    Differentiating w.r.t. x:

    \(\Rightarrow-e^{-y}\frac{dy}{dx}-e^{-x}=0\) \(\Rightarrow\frac{dy}{dx}=-e^{y-x}\)

  • Question 12
    1 / -0

    Given that matrices A and B are of order \(3\times n\,and\,m\times5\) respectively, then the order of matrix C = 5A+3B is:

    Solution

    Since, order of matrices A and B are \(3\times n\) and \(m\times5\), respectively.

    Therefore, the order of matrices 5A and 3B are \(3\times n\) and \(m\times5\), respectively.

    We know that matrix addition of two matrices is possible if both matrices have same order.

    i.e., C is possible only if \(3\times n\) = \(m\times5\)

    ⇒ \(m=3\, \text{and}\, n=5\)

    And order of matrix C is \(m\times n = 3\times 5\)

     

  • Question 13
    1 / -0

    If y = 5 cos x – 3 sin x, then \(\frac{d^2y}{dx^2}\) is equal to:

    Solution

    y = 5 cos x – 3 sin x

    \(\Rightarrow\frac{dy}{dx}\) = −5 sin x − 3 cos x

    \(\Rightarrow\frac{d^2y}{dx^2}\) = −5 cos x + 3 sin x = −y

  • Question 14
    1 / -0

    For matrix \(A=\begin{bmatrix}2&5\\-11&7\end{bmatrix},(adj\,A)'\) is equal to:

    Solution

    \(adjA=\begin{bmatrix}7&-5\\11&2\end{bmatrix}\) \(\Rightarrow (adjA)'=\begin{bmatrix}7&11\\-5&2\end{bmatrix}\)

  • Question 15
    1 / -0

    The points on the curve \(\frac{x^2}{9}+\frac{y^2}{16}=1\) at which the tangents are parallel to y axis are:

    Solution

    \(\frac{x^2}{9}+\frac{y^2}{16}=1\;\Rightarrow\frac{2x}{9}+\frac{2y}{16}\frac{dy}{dx}=0\)

    \(\Rightarrow\) slope of normal \(=\frac{-dx}{dy}=\frac{9y}{16x}\)

    As curve’s tangent is parallel to y-axes

    Therefore, the normal to the curve is parallel to x-axis

    \(\Rightarrow\frac{9y}{16x}=0\Rightarrow y=0\;and\,x=\pm3\)

    \(\therefore\,points=(\pm3,0)\)

  • Question 16
    1 / -0

    Given that \(A=[a_{ij}]\) is a square matrix of order \(3\times3\,and\,|A|=-7,\) then the value of \(\sum_{i=1}^3a_{i2}A_{i2},\) where \(A_{ij}\) denotes the cofactor of element \(a_{ij}\) is:

    Solution

    \(|A|=-7\)

    \(\therefore\sum_{i=1}^3a_{i2}A_{i2}\) \(=a_{12}A_{12}+a_{22}A_{22}+a_{32}A_{32}\) \(=|A|=-7\)

  • Question 17
    1 / -0

    If \(y=log(cos\,e^x),\) then \(\frac{dy}{dx}\) is:

    Solution

    \(y=log(cos\,e^x)\)

    Differentiating wrt x:

    \(\frac{dy}{dx}=\frac{1}{cos(e^x)}.(-sin\,e^x).e^x\) (chain rule)

    \(\Rightarrow\frac{dy}{dx}=-e^x\,tan\,e^x\)

  • Question 18
    1 / -0

    The least value of the function \(f(x)=2cos\,x+x\) in the closed interval \([0,\frac{\pi}{2}]\) is:

    Solution

    \(f(x)=2cos\,x+x,x\in[0,\frac{\pi}{2}]\)

    \(f'(x)=-2sin\,x+1\)

    \(let\,f'(x)=0\Rightarrow x=\frac{\pi}{6}\in[0,\frac{\pi}{2}]\)

    f(0) = 2

    \(f(\frac{\pi}{6})=\frac{\pi}{6}+\sqrt3\)

    \(f(\frac{\pi}{2})=\frac{\pi}{2}\)

    \(\Rightarrow\) least value of f(x) is \(\frac{\pi}{2}\,at\,x=\frac{\pi}{2}\)

  • Question 19
    1 / -0

    The function \(f: R\longrightarrow R\) defined as \(f(x)=x^3\) is:

    Solution

    \(\text{let}\,f(x_1)=f(x_2)\forall x_1,x_2\in R\)

    \(\Rightarrow x^3_1=x_2^3\)

    \(\Rightarrow x^3_1-x_2^3=0\)

    \(\Rightarrow (x_1-x_2)(x_1^2+x_1x_2+x_2^2)=0\)

    \(\Rightarrow x_1=x_2\)  \((\because x_1^2+x_1x_2+x_2^2 \neq0)\)

    \(\Rightarrow\) f is one - one

    \(\text{let}\,f(x)=x^3=y\;\forall y\in R\)

    \(\Rightarrow x=y^{\frac{1}{3}}\)

    Therefore, every image \(y\in R\) has a unique pre image \(y^{\frac{1}{3}}\) in \(R\).

    \(\Rightarrow f\) is onto

    \(\therefore\) f is one-one and onto.

  • Question 20
    1 / -0

    If \(x=a\,sec\,\theta,y=b\,tan\,\theta,\) then \(\frac{d^2y}{dx^2}\,at\,\theta=\frac{\pi}{6}\) is:

    Solution

    \(x=a\,sec\,\theta\Rightarrow\frac{dx}{d\theta}=a\,tan\,\theta\,sec\,\theta\)

    \(y=b\,tan\,\theta\Rightarrow\frac{dy}{d\theta}=b\,sec^2\theta\)

    \(\therefore\frac{dy}{dx}=\frac{b}{a}coses\theta\)

    \(\Rightarrow\frac{d^2y}{dx^2}=\frac{-b}{a}coses\theta.cot\theta.\frac{d\theta}{dx}\) \(=\frac{-b}{a^2}cot^3\theta\)

    \(\therefore\frac{d^2y}{dx^2}]_{\theta=\frac{\pi}{6}}=\frac{-3\sqrt3b}{a^2}\)

  • Question 21
    1 / -0

    The derivative of \(sin^{-1}\,(2x\sqrt{1-x^2})\) w.r.t \(sin^{-1}x,\frac{1}{\sqrt2}<x<1,\) is:

    Solution

    \(let\,u=sin^{-1}\,(2x\sqrt{1-x^2})\)

    \(and\,v=sin^{-1}\,x,\frac{1}{\sqrt2}<x<1\) \(\Rightarrow sin\,v=x...(1)\)

    Using (1), we get

    \(u=sin^{-1}(2\,sin\,v\,cos\,v)\)

    \(\Rightarrow u=sin^{-1}(sin 2v)\)

    \(\Rightarrow u=2v\)

    Differentiating with respect to v, we get: \(\frac{du}{dv}=2\)

  • Question 22
    1 / -0

    If \(A=\begin{bmatrix}1&-1&0\\2&3&4\\0&1&2\end{bmatrix}\,and\,B=\begin{bmatrix}2&2&-4\\-4&2&-4\\2&-1&5\end{bmatrix},\) then:

    Solution

    \(AB=\begin{bmatrix}1&-1&0\\2&3&4\\0&1&2\end{bmatrix}\begin{bmatrix}2&2&-4\\-4&2&-4\\2&-1&5\end{bmatrix}=\begin{bmatrix}6&0&0\\0&6&0\\0&0&6\end{bmatrix},\)

    \(\Rightarrow AB=6I\Rightarrow B^{-1}=\frac{1}{6}A\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now