Self Studies

Mix Test 3

Result Self Studies

Mix Test 3
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Simplest form of \(tan^{-1}\left(\frac{\sqrt{1+cos\,x}+\sqrt{1-cos\,x}}{\sqrt{1+cos\,x}-\sqrt{1-cos\,x}}\right),\) \(\pi<x<\frac{3\pi}{2}\) is:

    Solution

     \(tan^{-1}\left(\frac{\sqrt{1+cos\,x}+\sqrt{1-cos\,x}}{\sqrt{1+cos\,x}-\sqrt{1-cos\,x}}\right),\)

    \(=tan^{-1}\left(\cfrac{-\sqrt2cos\frac{x}{2}+\sqrt2sin\frac{x}{2}}{-\sqrt2cos\frac{x}{2}-\sqrt2sin\frac{x}{2}}\right),\) \(\pi<x<\frac{3\pi}{2}\)

    \(=tan^{-1}\left(\cfrac{cos\frac{x}{2}-sin\frac{x}{2}}{cos\frac{x}{2}+sin\frac{x}{2}}\right)\)

    \(=tan^{-1}\left(\cfrac{1-tan\frac{x}{2}}{1+tan\frac{x}{2}}\right)\)

    \(=tan^{-1}\left(\cfrac{tan\frac{\pi}{4}-tan\frac{x}{2}}{1+tan\frac{\pi}{4}tan\frac{x}{2}}\right)\)

    \(=tan^{-1}\left(tan(\frac{\pi}{4}-\frac{x}{2})\right)\)

    \(=\frac{\pi}{4}-\frac{x}{2}\)

  • Question 2
    1 / -0

    Given that A is a non-singular matrix of order 3 such that \(A^2\) = 2A, then value of |2A| is:

    Solution

    \(A^2=2A\)

    \(\Rightarrow|A^2|=|2A|\)

    \(\Rightarrow|A^2|=2^3|A|\)

    \(as\,|kA|=k^n|A|\) for a matrix of order n

    \(\Rightarrow\) either |A| = 0 or |A| = 8

    But A is non-singular matrix

    \(\therefore|2A|=2^3|A|=8^2=64 \)

  • Question 3
    1 / -0

    The value of b for which the function f(x) = x+cos x+b is strictly decreasing over R is:

    Solution

    \(f'(x)=1-sin\,x\) \(\Rightarrow f'(x)>0\;\forall x\in R\)

    \(\Rightarrow\) no value of b exists.

  • Question 4
    1 / -0

    Let R be the relation in the set N given by R = {(a, b) : a = b – 2, b > 6}, then:

    Solution

    a = b - 2 and b > 6

    If b = 8, then a = 8 - 2 = 6

    \(\Rightarrow(6,8)\in R\)

  • Question 5
    1 / -0

    The point(s), at which the function f given by \(f(x)=\begin{cases}\frac{x}{|x|},&x<0\\-1,&x\geq0\end{cases}\) is continuous, is/are:

    Solution

    \(f(x)=\begin{cases}\frac{x}{-x}=-1,&x<0\\-1,&x\geq0\end{cases}\)

    \(\Rightarrow f(x)=-1\;\forall\,x\in R\)

    \(\Rightarrow f(x)\) is continuous \(\forall\,x\in R\) as it is a constant function.

  • Question 6
    1 / -0

    If \(A=\begin{bmatrix}0&2\\3&-4\end{bmatrix}\,and\,kA=\begin{bmatrix}0&3a\\2b&24\end{bmatrix},\) then the values of k, a and b respectively are:

    Solution

    \(kA=\begin{bmatrix}0&2k\\3k&-4k\end{bmatrix}=\begin{bmatrix}0&3a\\2b&24\end{bmatrix}\)

    \(\Rightarrow k=-6,a=-4\,and\,b=-9\)

  • Question 7
    1 / -0

    The area of a trapezium is defined by function f and given by f(x) = (10+x) \(\sqrt{100-x^2},\) then the area when it is maximised is:

    Solution

    \(f'(x)=\frac{-2x^2-10x+100}{\sqrt{100-x^2}}\)

    \(f'(x)=0\Rightarrow x=-10\,or\,5,\)

    If \(x=-10\) then area = \(f(x)=0\) which is not maximum

    Therefore, \( x=5\)

    Now, \(f''(x)=\frac{2x^3-300x-1000}{(100-x^2)^{\frac{3}{2}}}\) 

     \(\Rightarrow f''(5)=\frac{-30}{\sqrt{75}}<0\)

    \(\Rightarrow\) Maximum area of trapezium is \(75\sqrt3cm^2\) when x = 5

  • Question 8
    1 / -0

    If A is square matrix such that \(A^2=A,\) then \((I+A)^3-7\,A\) is equal to:

    Solution

    \((I+A)^3-7A\) \(=I+A+3A+3A-7A=I\)

  • Question 9
    1 / -0

    If \(tan^{-1}\,x=y,\) then:

    Solution

    Since, principal value branch of \(tan^{-1}x\) is \((-\frac{\pi}{2}, \frac{\pi}{2})\).

    \(\therefore -\frac{\pi}{2}<tan^{-1} x< \frac{\pi}{2}\)

    \(\Rightarrow \frac{-\pi}{2}<y<\frac{\pi}{2}\)  \((\because tan^{-1}x =y)\)

  • Question 10
    1 / -0

    Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Based on the given information, f is best defined as:

    Solution

    As every per-image \(x\in A\) has a unique image \(y\in B\)

    \(\Rightarrow\) f is injective function.

  • Question 11
    1 / -0

    For \(A=\begin{bmatrix}3&1\\-1&2\end{bmatrix},\) then \(14A^{-1}\) is given by:

    Solution

    |A| = 7, adj A \(=\begin{bmatrix}2&-1\\1&3\end{bmatrix}\)

    \(\therefore14A^{-1}=14\frac{adj A}{|A|}=2\,adj A=\begin{bmatrix}4&-2\\2&6\end{bmatrix}\)

  • Question 12
    1 / -0

    The point(s) on the curve \(y=x^3-11x+5\) at which the tangent is y = x - 11 is/are:

    Solution

    \(y=x^3-11x+5\) \(\Rightarrow\frac{dy}{dx}=3x^2-11\)

    Slope of line \(y=x-11\,is\,1\) 

    \(\Rightarrow3x^2-11=1\Rightarrow x=\pm2\)

    \(\therefore\) point is (2, -9) as (-2, 19) does not satisfy given line.

  • Question 13
    1 / -0

    Given that \(A=\begin{bmatrix}\alpha&\beta\\\gamma&-\alpha\end{bmatrix}\,and\,A^2=3I,\) then:

    Solution

    \(A^2=3I,\)

    \(\Rightarrow\begin{bmatrix}\alpha^2+\beta \gamma&0\\0&\beta \gamma+\alpha^2\end{bmatrix}=\begin{bmatrix}3&0\\0&3\end{bmatrix}\)

    \(\Rightarrow3-\alpha^2-\beta \gamma=0\)

  • Question 14
    1 / -0

    For an objective function Z = ax + by, where a, b > 0; the corner points of the feasible region determined by a set of constraints (linear inequalities) are (0, 20), (10, 10), (30, 30) and (0, 40). The condition on a and b such that the maximum Z occurs at both the points (30, 30) and (0, 40) is:

    Solution

    As Z is maximum at (30, 30) and (0, 40)

    \(\Rightarrow\) 30a + 30b = 40b

    \(\Rightarrow\) b − 3a = 0

  • Question 15
    1 / -0

    For which value of m is the line y = mx + 1 a tangent to the curve \(y^2=4x?\)

    Solution

    y = mx+1 ...(1) and \(y^2\) = 4x .....(2)

    Substituting (1) in (2) : \((mx+1)^2=4x\)

    \(\Rightarrow m^2x^2+(2m-4)x+1=0...(3)\)

    As line is tangent to the curve

    \(\Rightarrow\) line touches the curve at only one point

    \(\Rightarrow(2m-4)^2-4m^2=0\) \(\Rightarrow m=1\)

  • Question 16
    1 / -0

    The maximum value of \([x(x-1)+1]^{\frac{1}{3}},\) \(0\leq x\leq1\) is:

    Solution

    \(Let\,f(x)=[x(x-1)+1]^{\frac{1}{3}},\) \(0\leq x\leq1\)

    \(f'(x)=\frac{2x-1}{3(x^2-x+1)^{\frac{2}{3}}}\)

    let f'(x) = 0

    \(\Rightarrow x=\frac{1}{2}\in[0,1]\)

    f(0) = 1, \(f\left(\frac{1}{2}\right)=\left(\frac{3}{4}\right)^{\frac{1}{3}}\) and f(1) = 1

    \(\therefore\) Maximum value of f(x) is 1.

  • Question 17
    1 / -0

    Let \(A=\begin{bmatrix}1&sin\alpha&1\\-sin\alpha&1&sin\alpha\\-1&-sin\alpha&1\end{bmatrix},\) where \(0\leq\alpha\leq2\pi,\) then:

    Solution

    \(|A|=2+2sin^2\alpha\)

    \(As\,-1\leq sin\alpha\leq1,\forall\,0\leq\alpha\leq2\pi\)

    \(\Rightarrow2\leq2+2sin^2\alpha\leq4\) \(\Rightarrow|A|\in[2,4]\)

  • Question 18
    1 / -0

    Given that the fuel cost per hour is k times the square of the speed the train generates in km/h, the value of k is:

    Solution

    Fuel cost \(=k(speed)^2\)

    \(\Rightarrow48=k.16^2\Rightarrow k=\frac{3}{16}\)

  • Question 19
    1 / -0

    If the train has travelled a distance of 500 km, then the total cost of running the train is given by function:

    Solution

    Fuel cost \(=k(speed)^2\)

    \(\Rightarrow48=k.16^2\Rightarrow k=\frac{3}{16}\)

    Let the total cost of running train is C.

    According to the question,

    \(\frac{dC}{at}=\frac{3}{16}v^2+1200\)

    \(\Rightarrow C=\frac{3}{16}v^2t+1200t\) (By integrating both sides w.r.t t)

    Hence, total cost of running train is \(C=\frac{3}{16}\nu^2t+1200t\)

    Distance covered = 500km

    \(\Rightarrow\) time \(=\frac{500}{\nu}hrs\)

    Total cost of running train 500 km \(=\frac{3}{16}\nu^2\left(\frac{500}{\nu}\right)+1200\left(\frac{500}{\nu}\right)\)

    \(\Rightarrow C=\frac{375}{4}\nu+\frac{600000}{\nu}\)

  • Question 20
    1 / -0

    If the train has travelled a distance of 500 km, then the most economical speed to run the train is:

    Solution

    Fuel cost \(=k(speed)^2\)

    \(\Rightarrow48=k.16^2\)

    \(\Rightarrow k=\frac{3}{16}\)

    Let the total cost of running train is C.

    According to the question,

    \(\frac{dC}{at}=\frac{3}{16}v^2+1200\)

    \(\Rightarrow C=\frac{3}{16}v^2t+1200t\) (By integrating both sides w.r.t t)

    Hence, total cost of running train is \(C=\frac{3}{16}\nu^2t+1200t\)

    Distance covered = 500km

    \(\Rightarrow\) time \(=\frac{500}{\nu}hrs\)

    Total cost of running train 500 km \(=\frac{3}{16}\nu^2\left(\frac{500}{\nu}\right)+1200\left(\frac{500}{\nu}\right)\)

    \(\Rightarrow C=\frac{375}{4}\nu+\frac{600000}{\nu}\)

    Now, \(\frac{dC}{dv}=\frac{375}{4}-\frac{600000}{v^2}\)

    \(\therefore\,\frac{dC}{dv}=0\) gives \(v^2=\frac{600000\times 4}{375}\)

    \(\Rightarrow v^2=6400\)

    \(\Rightarrow v=80\,km/h\)

    Hence, the most economic speed of the train is 80 km/h

  • Question 21
    1 / -0

    The fuel cost for the train to travel 500 km at the most economical speed is:

    Solution

    Fuel cost \(=k(speed)^2\)

    \(\Rightarrow48=k.16^2\)

    \(\Rightarrow k=\frac{3}{16}\)

    Let the total cost of running train is C.

    According to the question,

    \(\frac{dC}{at}=\frac{3}{16}v^2+1200\)

    \(\Rightarrow C=\frac{3}{16}v^2t+1200t\) (By integrating both sides w.r.t t)

    Hence, total cost of running train is \(C=\frac{3}{16}\nu^2t+1200t\)

    Distance covered = 500km

    \(\Rightarrow\) time \(=\frac{500}{\nu}hrs\)

    Total cost of running train 500 km \(=\frac{3}{16}\nu^2\left(\frac{500}{\nu}\right)+1200\left(\frac{500}{\nu}\right)\)

    \(\Rightarrow C=\frac{375}{4}\nu+\frac{600000}{\nu}\)

    Now, \(\frac{dC}{dv}=\frac{375}{4}-\frac{600000}{v^2}\)

    \(\therefore\,\frac{dC}{dv}=0\) gives \(v^2=\frac{600000\times 4}{375}\)

    \(\Rightarrow v^2=6400\)

    \(\Rightarrow v=80\,km/h\)

    Hence, the most economic speed of the train is 80 km/h

    Fuel cost for the train to travel 500 km at the most economical speed is \(\frac{375}{4}\nu=\frac{375}{4}\times80=Rs.7500/-\)

  • Question 22
    1 / -0

    The total cost of the train to travel 500 km at the most economical speed is:

    Solution

    Fuel cost \(=k(speed)^2\)

    \(\Rightarrow48=k.16^2\)

    \(\Rightarrow k=\frac{3}{16}\)

    Let the total cost of running train is C.

    According to the question,

    \(\frac{dC}{at}=\frac{3}{16}v^2+1200\)

    \(\Rightarrow C=\frac{3}{16}v^2t+1200t\) (By integrating both sides w.r.t t)

    Hence, total cost of running train is \(C=\frac{3}{16}\nu^2t+1200t\)

    Distance covered = 500km

    \(\Rightarrow\) time \(=\frac{500}{\nu}hrs\)

    Total cost of running train 500 km \(=\frac{3}{16}\nu^2\left(\frac{500}{\nu}\right)+1200\left(\frac{500}{\nu}\right)\)

    \(\Rightarrow C=\frac{375}{4}\nu+\frac{600000}{\nu}\)

    Now, \(\frac{dC}{dv}=\frac{375}{4}-\frac{600000}{v^2}\)

    \(\therefore\,\frac{dC}{dv}=0\) gives \(v^2=\frac{600000\times 4}{375}\)

    \(\Rightarrow v^2=6400\)

    \(\Rightarrow v=80\,km/h\)

    Hence, the most economic speed of the train is 80 km/h.

    The total cost of the train to travel 500 km at the most economical speed \(=\frac{375}{4}\nu+\frac{600000}{\nu}\)

    \(=\frac{375\times80}{4}+\frac{600000}{80}=Rs.15000/-\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now