Self Studies

Electric Charges and Fields Test - 30

Result Self Studies

Electric Charges and Fields Test - 30
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    A charge of $$10$$ $$units$$ is divided so that force between the two charges is maximum when placed $$2$$ $$cm$$ apart. The two charges are:

    Solution
    Let the two charges be $$q_1, q_2$$
    $$q_1+q_2=10$$
    Force between them when placed 2 cm apart
    $$F=\dfrac {k(q_1)(q_2)}{(2\times 10^{-2})^2}$$
    $$F=\dfrac {k(q_1)(10-q_1)}{(2\times 10^{-2})^2}$$
    differentiate $$F$$ and equate it to zero to find at value of $$q_1$$, $$F$$ will be maximum.
    $$\dfrac {dF}{dq_1}=\dfrac {k}{(2\times 10^{-2})^2}(10-2q_1)=0$$
    $$\Rightarrow q_1=5$$
    $$q_2=10-q_1$$
    $$q_2=5$$
    $$\therefore q_1=q_2=5\ C$$
  • Question 2
    1 / -0

    The electric field in a region of space is given by $$\vec{E}=(\hat{5i}+\hat{2j}  )Nc^{-1}$$ . The electric flux due to this field through an area $$2m^{2}$$ lying in the Y-Z plane in S.I. units is

    Solution
    As $$2m^{2}$$ area is in y-z plane its area vector which is perpendicular to y-z plane is in x axis.
    $$\therefore$$ area vector $$=2(\hat{i})$$
    given $$E=5i+2j$$
    We know flux $$\phi=E.A$$
    $$=(2i).(5i+2j)$$
    $$\phi=10$$
  • Question 3
    1 / -0
    A charge $$Q$$ is divided into two parts $$q_{1}$$ and $$q_{2}$$ such that they experience maximum force of repulsion when separated by certain distance. The ratio of $$Q, q_{1}$$ and $$q_{2}$$ is :
    Solution
    $$\textbf{Step 1: Divide Q} $$
    $$Q$$ is divided into two parts $$q_1$$ and$$q_2$$ 
                $$\therefore $$     $$Q = q_{1} + q_{2} $$                                                                                                                                       $$....(1)$$

    $$\textbf{Step 2: Force of repulsion between}\ q_{1}\ \textbf{and}\ q_{2}$$ 
    Let $$r$$ be the distance between charges. 
     Using Coulomb's law,  $$F = \dfrac{k q_{1} q_{2}}{r^2} $$$$   = \dfrac{k q_{1} (Q - q_{1})}{r^2} $$                                                                                         $$....(2)$$

    $$\textbf{Step 3: Condition for force to be maximum} $$ 
    The repulsive force between the charges will be maximum if,
                          $$\dfrac{dF}{dq_{1}} = 0 $$
                      $$\Rightarrow\dfrac{k}{r^2} (Q - 2q_{1}) = 0$$
                      $$\Rightarrow q_{1} = \dfrac{Q}{2} $$

     Equation $$(1)\Rightarrow$$   $$q_{2} = Q - \dfrac{Q}{2} = \dfrac{Q}{2} $$ 

    $$\textbf{Step 4: Ratio of}\ Q : q_{1} : q_{2} $$  

    $$Q : q_{1} : q_{2} = Q : \dfrac{Q}{2} : \dfrac{Q}{2} = 1 : \dfrac{1}{2} : \dfrac{1}{2} $$ 
    $$\Rightarrow Q : q_{1} : q_{2} = 2 : 1 : 1 $$

    Hence, Option (D) is correct.
  • Question 4
    1 / -0

    Two alpha particles are separated by a distance of $$10^{-13}m$$. The force between them in free space is :

    Solution
    $$\alpha  \ particles \  are\ He^{+2} \ ions$$
    $$\therefore $$ Net charge present on them is $$2\times (1\cdot 6\times 10^ {-19})C.$$
    We know $$F=\dfrac {kq_1q_2}{r^2}$$

    $$F=\dfrac {(9\times 10^9)(2\times 1\cdot 6\times 10^{-19})(2\times 1\cdot 6\times 10^{-19})}{(10^{-13})^2}$$

    $$F=\dfrac {92\cdot 16\times 10^{-29}}{10^{-26}}$$

    $$F=92\cdot 16\times 10^{-3}N$$
  • Question 5
    1 / -0

    The excess (equal in number) number of electrons that must be placed on each of the two small spheres spaced $$3 cm$$ apart with a force of repulsion between them to be $$10^{-19} N$$ is :

    Solution
    We need force of repulsion $$= 10^{-19}N$$
    Let n no. of increase electrons are placed on each sphere 
    $$\Rightarrow \dfrac{K(ne)(ne)}{(3\times 10^{-2})^2}= 10^{-19}$$

    $$\Rightarrow n^2e^2= \dfrac{10^{-19}\times 9\times 10^{-4}}{9\times 10^9\times e^2}$$

    $$\Rightarrow n^2= \dfrac{10^{-32}}{e^2} \Rightarrow n= \dfrac{10^{-16}}{e}$$

    $$n= \dfrac{10^{-16}}{1.6\times 10^{-19}}$$

    $$n=  \dfrac{1000}{1.6}= 625$$
  • Question 6
    1 / -0

    Two charges each of $$100$$ micro coulomb are separated in a medium of relative permittivity $$2$$ by a distance of $$5 cm$$. The force between them is :

    Solution
    We know force between two charges in a medium separated by a distance 'r'
    $$F=\dfrac {(q_1)(q_2)}{4\pi \varepsilon r^2}$$

    where, $$ \epsilon_r= \dfrac{\epsilon}{\epsilon_o}$$
    given, $$\epsilon_r=2$$ $$\implies \epsilon = 2\times \epsilon_o$$

    $$F=\dfrac {(100\times 10^{-6})(100\times 10^{-6})\times 9\times 10^9}{2\times (5\times 10^{-2})^2}$$

    $$F=\dfrac {90}{2\times 25\times 10^{-4}}$$

    $$F=\dfrac {90\times 100\times 10^2}{50}$$

    $$F=1\cdot 8\times 10^4 N$$
  • Question 7
    1 / -0
    Two equally charged pith balls $$3\ cm$$ apart repel each other with a force of $$4\times10^{-5}\ N $$. The charge on each ball is
    Solution
    The pith balls repel each other with force $$F=4\times 10^{-5}\ N$$ and let the charge on each pith ball be $$Q$$.

    $$\therefore \dfrac {k(Q)(Q)}{(3\times 10^{-2})^2}=4\times 10^{-5}$$

    or, $$Q^2=\dfrac {4\times 10^{-5}\times 9\times 10^{-4}}{9\times 10^9}$$

    or, $$Q^2=4\times 10^{-18}$$

    or, $$Q=2\times 10^{-9}\ C$$

  • Question 8
    1 / -0

    $$Q_{1},Q_{2}$$ charges are separated by distance $$‘d’$$. $$F$$ is the force between them. Now the value of $$Q_{2}$$ is halved. To have the same force between the charges, the distance of separation should be :

    Solution
    Initially force between them $$F= \dfrac{K Q_1 Q_2}{d^2}$$
    Now $$Q_2$$ is halved so to have the same force let the distance be X

    $$\Rightarrow \dfrac{K(\dfrac{Q_2}{2})Q_1}{X^2}= \dfrac{K Q_1 Q_2}{d^2}$$

    $$\Rightarrow \dfrac{1}{2X^2}= \dfrac{1}{d^2}$$

    $$\Rightarrow \dfrac{1}{\sqrt2X}= \dfrac{1}{d}$$

    $$\Rightarrow X= \dfrac{d}{\sqrt2}$$
  • Question 9
    1 / -0

    Two unlike charges separated by a distance of $$1m$$ attract each other with a force of $$0.108N$$. If the charges are in the ratio $$1:3$$, the weak charge is :

    Solution
    Let the charges be $$q $$ and $$3q $$
    given force $$= 0.108N$$
    $$\Rightarrow 0.108= \dfrac{K(q )(3q )}{(1)^2}$$
    $$\Rightarrow 0.108 = 9\times 10^9\times 3q ^2$$

    $$\Rightarrow q ^2= \dfrac{108\times 10^{-3}}{9\times 3\times 10^9}$$

    $$\Rightarrow q ^2= 4\times 10^{-12}$$
    $$\Rightarrow q = 2\times 10^{-6}$$
    $$\therefore q = 2 \mu C$$
  • Question 10
    1 / -0

    Two charges $$2C$$ and $$6C$$ are separated by a finite distance. If a charge of $$-4C$$ is added to each of them, The initial force of $$12 \times10^{3}N$$ will change to :

    Solution
    Given initial force $$=12\times 10^3$$
    $$\Rightarrow \dfrac{k(2)(6)}{x^2}=12\times 10^3$$
    when a charge of $$- 4c$$ is added to each of them
    $$F_{new}=\dfrac{k(-2)(2)}{x^2}$$
    (Putting value of $$x^2$$ from above equation)

    $$=\dfrac{k(-2)(2)}{k(2)(6)}\times{12}\times 10^3$$

    $$F_{new}=-4\times 10^3N$$ (negative sign implies attraction)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now