Self Studies

Nuclei Test - 44

Result Self Studies

Nuclei Test - 44
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The binding energy per nucleon of 8O16_{ 8 }{ { O }^{ 16 } } is 7.97MeV7.97 MeV and that of 8O17_{ 8 }{ { O }^{ 17 } } is 7.75MeV7.75 MeV. The energy required to remove one neutron from 8O17_{ 8 }{ { O }^{ 17 } } is ___________ MeVMeV.
    Solution
    8O16_{ 8 }{ { O }^{ 16 } }\longrightarrow 8O17+0n1_{ 8 }{ { O }^{ 17 } }+_{ 0 }{ { n }^{ 1 } }
    ∴ energy to remove neutron 
    = binding energy of 8O17_{ 8 }{ { O }^{ 17 }} –binding energy of 8O16_{ 8 }{ { O }^{ 16 }} = (17 × 7.75) – (16 × 7.79) = 4.23 MeV.
  • Question 2
    1 / -0
    What is the QvalueQ-value of the reaction?
    $$P + \,^{7}Li \rightarrow \, ^{4}He +\, ^{4}He$$
    The atomic masses of 1H,4He^{1}H, ^{4}He and 7Li^{7}Li are 1.007825u,4.0026034u1.007825u, 4.0026034u and 7.016004u7.016004u respectively.
    Solution
    The total mass of the initial particles
    mi=1.007825+7.016004m_{i} = 1.007825 + 7.016004
    =8.023829u= 8.023829u
    and the total mass of final particles
    mf=2×4.002603m_{f} = 2\times 4.002603
    =8.005206u= 8.005206u
    Difference between initial and final mass of particles
    m=mimf\triangle m = m_{i} - m_{f}
    =8.0238298.005206= 8.023829 - 8.005206
    =0.018623u= 0.018623u
    The QvalueQ-value is given by
    Q=(m)c2Q = (\triangle m)c^{2}
    =0.018623×931.5= 0.018623\times 931.5
    =17.35 MeV= 17.35\ MeV.
  • Question 3
    1 / -0
    Consider the nuclear reaction
    X200A110+B90+energyX^{200}\rightarrow\,A^{110}+B^{90}+ energy
    If the binding energy per nucleon for X,AX , \,A and B B is 7.4MeV,8.2MeV7.4 MeV , 8.2 MeV and 8.2MeV8.2 MeV respectively . What is the energy released?
    Solution
    Energy released =(EA+EB)EX=(E_A+E_B)-E_X
    =(110×8.2+90×8.2)200×7.4=(110\times 8.2+90 \times 8.2)-200 \times 7.4
    =16401480=1640-1480
    =160MeV=160 MeV

  • Question 4
    1 / -0
    234U^{234}U has 9292 protons and 234234 nucleons total in its nucleus. It decays by emitting an alpha particle. After the decay it becomes.
    Solution
    92234Ua90230Th+α\displaystyle ^{234}_{92}U\overset{a}{\rightarrow} {^{230}_{90}Th}+\alpha
    The mass number of thorium is 230230 and its atomic number, Z is 9090.
    The mass number of radium is 226226 and it atomic number is 8888. As it is given 230Ra^{230}Ra, students can make a mistake. Also the value of Z is not given. As at one instant, only one α\alpha particle can be emitted, unless it is given two successive emission of α\alpha particle, Ra cannot be obtained.
  • Question 5
    1 / -0
     A nuclear reaction along with the masses of the particles taking part in it is as follows:
    A+BC+D+QMeVA+B\longrightarrow C+D+QMeV
    1.002amu+1.004amu1.001amu+1.003amu+Q\underset { amu }{ 1.002 } +\underset { amu }{ 1.004 } \longrightarrow \underset { amu }{ 1.001 } +\underset { amu }{ 1.003 } +Q
    The energy QQ liberated in the reaction is
    Solution
    by relation
    Q=mrmp=2.0062.004Q=\sum { { m }_{ r } } -\sum { { m }_{ p } } =2.006-2.004
    Q=0.002×931=1.86MeV\therefore Q=0.002\times 931=1.86MeV\quad
  • Question 6
    1 / -0
    Consider the following statements (XX and YY stand for two different elements)
    (I) 32X65_{32}X^{65} and 33Y65_{33}Y^{65} are isotopes.
    (II) 42X86_{42}X^{86} and 42Y85_{42}Y^{85} are isotopes.
    (III) 85X174_{85}X^{174} and 88Y177_{88}Y^{177} have the same number of neutrons.
    (IV) 92X235_{92}X^{235} and 94Y235_{94}Y^{235} are isobars.
    The correct statements are
    Solution
    Two atoms are said to be isotope if they have same atomic number but different mass number.
    So, 42X86_{42}X^{86} and 42Y85_{42}Y^{85} are isotopes.
    Number of neutrons in 85X174_{85}X^{174}  =17485=89 = 174 - 85 = 89
    Number of neutrons in 88Y177_{88}Y^{177}  =17485=89 = 174 - 85 = 89
    So both have same number of neutrons.
    Two atoms are said to be isobars if they have different atomic number but same mass number.
    So, 92X235_{92}X^{235} and 94Y235_{94}Y^{235} are isobars.
  • Question 7
    1 / -0
    If M(A, Z), MpM_p and MnM_n denote the masses of the nucleus, proton and neutron respectively in units of u(1u=931.5MeV/c2)u(1u=931.5 MeV/c^2) and BE represents its binding energy in MeV, then.
    Solution
    ZMp+(AZ)Mn=M(A,Z)ZM_p +(A-Z)M_n= M(A,Z)
    Mass effect= B.E.c2\dfrac{B.E.}{c^2}
    M(A,Z)=ZMp+(AZ)MnBE/c2M(A, Z)=ZM_p+(A-Z)M_n-BE/c^2
  • Question 8
    1 / -0
    Find the binding energy of an electron in the ground state of a hydrogen like atom in whose spectrum the third of the corresponding Balmer series is equal to 108.5 nm
    Solution
    Binding energy in the ground state

                                   Eb=E0Z2n2E_b=\frac{E_0 Z^2}{n^2}

                                            =E0Z212=\frac{E_0Z^2}{1^2}

                                             =E0Z2=E_0Z^2

    Wave number of third Balmer line is

                                   v=E0Z2hc(122152)v=\frac{E_0 Z^2}{hc} (\frac{1}{2^2}-\frac{1}{5^2})

                                           =E0Z2hc.21100=\frac{E_0Z^2}{hc}. \frac{21}{100}

    Wavelength of third Balmer line

                                     λ=1v\lambda=\frac{1}{v}

                                         =hcE0Z2.10021=\frac{hc}{E_0Z^2}. \frac{100}{21}

                                         =19.861026Eb.10021=\frac{19.86*10^{-26}}{E_b} . \frac{100}{21}

                                   Eb=19.861026λ.10021E_b=\frac{19.86*10^{-26}} {\lambda} . \frac{100}{21}

                                          =19.861026108.5109.10021=\frac{19.86*10^{-26}}{108.5*10^{-9}} . \frac{100}{21}

                                           =8.7=8.7 X 1018J10^-18 J

                                           =8.710181.61019eV=\frac{8.7*10^{-18}}{1.6*10^-19} eV
                   
                                            =54.4eV=54.4 eV

                                                    
  • Question 9
    1 / -0
    Which of the following statements is correct?
    Solution
    The rest mass of a stable nucleus is less than the sum of the rest masses of its separated nucleons.
    In nuclear fission, energy is released by fragmentation of a very low nucleus
  • Question 10
    1 / -0
    An energy of 24.6eV24.6eV is required to remove one of the electrons from a neutral helium atom. The energy (in eV) required to remove both the electrons from a neutral helium atom is
    Solution
    When one electron from neutral helium atom is removed, it becomes hydrogen like. The ionisation energy of hydrogen like atom is given by
    Eion=Z2Rhc{ E }_{ ion }={ Z }^{ 2 }Rhc
    for helium, Z=2Z=2 Rhc=13.6eVRhc=13.6eV
    \therefore Energy required to liberate second electron from helium
    E2=Eion=22×13.6eV=54eV\quad { E }_{ 2 }={ E }_{ ion }={ 2 }^{ 2 }\times 13.6eV=-54eV
    \therefore Energy required to remove both the electrons from helium is
    =E1+E2=(24.6+54.4)eV=79.0eV={ E }_{ 1 }+{ E }_{ 2 }=(24.6+54.4)eV=79.0eV
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now