Correct answer: Option A
Hint: Formula for effective
capacitance in series is
$$\dfrac{1}{{{C_{eq}}}} = \dfrac{1}{{{C_1}}}
+ \dfrac{1}{{{C_2}}}$$
Formula for effective
capacitance in parallel is
$${C_{eq}} = {C_1} + {C_2}$$
Step 1: Finding Effective capacitance in series
the effective
capacitance in the first section in
series, is given by
$$\dfrac{1}{{{C_1}}} = \dfrac{1}{3} +
\dfrac{1}{3} + \dfrac{1}{3}$$
$${C_1} = 1$$
Similarly,
$$\dfrac{1}{{{C_2}}} = \dfrac{1}{3} +
\dfrac{1}{3} + \dfrac{1}{3}$$
$${C_2} = 1$$
$$\dfrac{1}{{{C_3}}} = \dfrac{1}{3} +
\dfrac{1}{3} + \dfrac{1}{3}$$
$${C_3} = 1$$
$$\dfrac{1}{{{C_4}}} = \dfrac{1}{3} +
\dfrac{1}{3} + \dfrac{1}{3}$$
$${C_4} = 1$$
Step 2: Finding Effective capacitance in parallel
Now $${C_1}$$
is
in parallel with $$ {1} \mu F$$,Here $${C_5}$$ is net capacitance of $${C_5}$$ and $$1{\mu F}$$ capacitor.
$${C_5} = {C_1} + 1$$
$${C_5} = 1 + 1$$
$${C_5} = 2$$
Similarly,
$${C_6} = {C_2} + 1$$
$${C_6} = 1 + 1$$
$${C_6} = 2$$
$${C_7} = {C_3} + 1$$
$${C_7} = 1 + 1$$
$${C_7} = 2$$
$${C_8} = {C_4} + 1$$
$${C_8} = 1 + 1$$
$${C_8} = 2$$
And it is already given in figure that rest two capacitors are $${C_9}$$ and $${C_9}'$$ =.$$ {2} \mu F$$.
Step 3: Finding Resultant capacitance
Hence, the resultant capacitance in series given by,
$$\dfrac{1}{{{C_{AB}}}} = \dfrac{1}{2}
+ \dfrac{1}{2} + \dfrac{1}{2} + \dfrac{1}{2} + \dfrac{1}{2} + \dfrac{1}{2}$$
$${C_{AB}} = \dfrac{1}{3}\mu F$$
The effective capacitance is $$\dfrac{1}{3}\mu F$$
Option (A) is correct.