Self Studies

Electrostatic Potential and Capacitance Test - 51

Result Self Studies

Electrostatic Potential and Capacitance Test - 51
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The ratio of momentum of an electron and an alpha particle which are accelerated from rest by  potential difference of 100 V is:
    Solution
    Mass of proton $$=1$$ $$u$$
    and, Mass of alpha particle $$=4$$ $$u$$
    Charge of proton $$=e$$
    And, charge of alpha particle $$=2e$$
    For charge moving in a uniform potential field.
    $$K.E=$$ Electric potential energy
    $$\cfrac{1}{2}mv^2=qV$$
    $$v=\sqrt{\cfrac{2qV}{m}}$$
    OR,
    Momentum $$(P)=mv$$
    $$\Rightarrow P=m\sqrt{\cfrac{2qV}{m}}$$
    $$\Rightarrow P=\sqrt{m2qV}$$
    Momentum of proton,
    $$P_1=\sqrt{2qVm_1}=\sqrt{2eVm_e}$$
    Momentum of alpha particle 
    $$P_2=\sqrt{2qVm_2}=\sqrt{2\times 2eVm_a}$$
    $$\therefore \cfrac{P_1}{P_2}=\sqrt{\cfrac{2eVm_e}{4eVm_a}}$$
    $$\therefore \cfrac{P_1}{P_2}=\sqrt{\cfrac{m_e}{2m_a}}$$
  • Question 2
    1 / -0
    A charged particle 'q' is shot with speed v towards another fixed charged particle Q. It approaches Q upto a closest distance r and then returns. If q were given a speed $$2v$$, the closest distance of approach would be.
    Solution
    At closest distance r its whole KE is converted into PE.
    $$\therefore \displaystyle\frac{1}{2}mv^2=\frac{1}{4\pi \varepsilon_0}\frac{Q\cdot q}{r}$$ $$\Rightarrow r=\displaystyle\frac{1}{4\pi \varepsilon_0}\frac{Q\cdot q}{mv^2}$$
    In next case, $$\displaystyle r'=\frac{1}{4\pi \varepsilon_0}\frac{Qq}{m(2v)^2}$$
    $$\Rightarrow r'=\displaystyle \frac{1}{4}\left(\displaystyle\frac{1}{4\pi \varepsilon_0}\cdot \frac{Qq}{mv^2}\right)\Rightarrow r'=r/4$$.
  • Question 3
    1 / -0
    The area of the plates of a parallel plante capacitor is $$A$$ and the gap between them is $$d$$. The gap is filled with a non-homogeneous dielectric whose dielectric constant varies with the distance $$y$$ from one plate as:$$K=\lambda \sec { \left( \cfrac { \pi y }{ 2d }  \right)  } $$, where $$\lambda$$ is a dimensionless constant. The capacitance of this capacitor is
    Solution
    $$E=\cfrac{\sigma}{K\epsilon_o}$$
    $$\cfrac{dv}{dy}=\cfrac{\sigma}{K\epsilon_o}$$
    $$\int _{ 0 }^{ v } dv=\cfrac { \sigma  }{ \lambda \epsilon _{ o } } \int _{ 0 }^{ d } \cos  \left( \cfrac { \pi y }{ 2d }  \right) dyV\\ =\cfrac { \sigma  }{ \lambda \epsilon _{ o } } \times \cfrac { 2d }{ \pi  } \left[ \sin  \cfrac { \pi y }{ 2d }  \right] _{ 0 }^{ d }\\ =\cfrac { \sigma  }{ \lambda \epsilon _{ o } } \times \cfrac { 2d }{ \pi  } \\ C=\cfrac{ Q}{V}=\cfrac{A\lambda\epsilon_o\pi}{2d}$$
  • Question 4
    1 / -0
    A capacitor is charged by a battery and then the battery is disconnected. A dielectric slab is introduced between the plates. The result is
    Solution
    As dielectric slab does not affect charges:
    $$V=\cfrac{Q}{C}=\cfrac{Qd}{K\epsilon_oA}$$
  • Question 5
    1 / -0
    The equivalent capacitance between point $$a$$ and $$b$$ in the combination of capacity figure is

    Solution
    FOR IMAGE 01: The series combination are:
    $$\left[C_s=\cfrac{2\times 3}{2+3}=\cfrac{6}{5}\mu F\right]$$
    FOR IMAGE 02: The parallel Combination are:
    $$C_{eq}=4+\cfrac{6}{5}+5$$
    $$=\cfrac{56}{5}=11.2\mu F$$

  • Question 6
    1 / -0
    The equivalent capacitance for the network shown in the figure is:

    Solution
    Capacitance of $${C}_{1}={C}_{4}=100pF$$
    Capacitance of $${C}_{2}={C}_{3}=400pF$$
    Supply voltage, $$V=400V$$
    Capacitors $${C}_{2}$$ and $${C}_{3}$$ are connected in series
    Equivalent capacitance
    $$C'=\cfrac { 1 }{ 400 } +\cfrac { 1 }{ 400 } =\cfrac { 2 }{ 400 } $$
    or $$C'=200pF$$
    Capacitors $${C}_{1}$$ $$C'$$ are in parallel
    Their equivalent capacitance
    $$C''=C'+{C}_{1}=200+100=300pF$$
    Capacitors $$C''$$ and $${C}_{4}$$ are connected in series
    Equivalent capacitance $$\cfrac { 1 }{ { C }_{ eq } } =\cfrac { 1 }{ C'' } +\cfrac { 1 }{ { C }_{ 4 } } =\cfrac { 1 }{ 300 } +\cfrac { 1 }{ 100 } $$
    $$\cfrac { 1 }{ { C }_{ eq } } =\cfrac { 4 }{ 300 } $$
    $$\therefore { C }_{ eq }=\cfrac { 300 }{ 4 } pF$$

  • Question 7
    1 / -0
    A capacitor of capacitance $${ C }_{ 1 }$$ is charged to a potential V and then connected in parallel to an uncharged capacitor of capacitance $${ C }_{ 2 }$$. The final potential difference across each capacitor will be
    Solution

  • Question 8
    1 / -0
    The electric potential at a point in free space due to a charge $$Q$$ coulomb is $$Q\times { 10 }^{ 11 }V$$. The electric field at that point is
    Solution
    Here $$V=\cfrac { Q }{ 4\pi { \varepsilon  }_{ 0 }r } =Q\times { 10 }^{ 11 }$$
    $$\therefore 4\pi { \varepsilon  }_{ 0 }r={ 10 }^{ -11 }...(i)$$
    Now, $$E=\cfrac { Q }{ 4\pi { \varepsilon  }_{ 0 }{ r }^{ 2 } } =\cfrac { Q\times 4\pi { \varepsilon  }_{ 0 } }{ (4\pi { \varepsilon  }_{ 0 }{ r) }^{ 2 } } =\cfrac { Q\times 4\pi { \varepsilon  }_{ 0 } }{ ({ 10 }^{ -11 })^{ 2 } } =4\pi { \varepsilon  }_{ 0 }Q\times { 10 }^{ 22 }V{ m }^{ -1 }$$ (Using (i))
  • Question 9
    1 / -0
    Two capacitors of 2 $$\mu F$$ and 4 $$\mu F$$ are connected in parallel. A third capacitor of 6 $$\mu F$$ is connected in series. The combination is connected across a 12 V battery. The voltage across 2 $$\mu F$$ capacitor is:
    Solution
    $${ C }_{ P }=2+4=6\mu F$$
    $$\cfrac { 1 }{ C } =\cfrac { 1 }{ 6 } +\cfrac { 1 }{ 6 } =\cfrac { 2 }{ 6 } =\cfrac { 1 }{ 3 } \quad or\quad C=3\mu F$$
    Total charge
    $$Q=CV=3\times 12=36\mu C\quad \quad $$
    voltage across $$6\mu F$$ capacitor $$\quad =\cfrac { 36\mu C }{ 6\mu F } =6V$$
    $$\therefore$$ Voltage across each of $$2\mu F$$ and $$4\mu F$$ capacitors
         $$=12V-6V$$
    $$V=6V$$

  • Question 10
    1 / -0
    A parallel plate capacitor of capacitance 5 $$\mu F$$ and plate separation 6 cm is connected to a 1 V battery and charged. A dielectric of dielectric constant 4 and thickness 4 cm is introduced between the plates of the capacitor. The additional charge that flows into the capacitor from the battery is
    Solution
    Charge on capacitor plates without the dielectric is
    $$=CV=\left( 5\times { 10 }^{ -6 }F \right) \times 1V=5\times { 10 }^{ -6 }C=5\mu C$$
    The capacitance after the dielectric is introduced is
    $$C'=\cfrac { { \varepsilon  }_{ 0 }A }{ d-\left( t-\cfrac { t }{ K }  \right)  } =\cfrac { { \varepsilon  }_{ 0 }A/d }{ 1-\left( \cfrac { t-\cfrac { t }{ K }  }{ d }  \right)  } =\cfrac { C }{ 1-\left( \cfrac { t-\cfrac { t }{ K }  }{ d }  \right)  } =\cfrac { 5\mu F }{ 1-\left( \cfrac { 4cm-\cfrac { 4cm }{ 4 }  }{ 6cm }  \right)  } =\cfrac { 5\mu F }{ 1-\left( \cfrac { 4-1 }{ 6 }  \right)  } =10\mu F\quad \quad $$
    $$\therefore$$ Charge on capacitor plate now will be
    $$Q'=C'V=10\mu F\times 1V=10\mu C$$
    Additional charge transferred $$=Q'-Q=10\mu C-5\mu C=5\mu C$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now