Self Studies

Electrostatic Potential and Capacitance Test - 62

Result Self Studies

Electrostatic Potential and Capacitance Test - 62
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Some charge Q is to be distributed on 3 concentric shell such that surface charge density on each shell is same as shown. Find the electric potential at r(<a) from point O.

    Solution

    $$r<a$$
    from point $$0$$.
    $$\oint { \overline { E }  } .d\overline { A } =\dfrac { { Q }_{ inside } }{ { \epsilon  }_{ 0 } } $$
    $${ \epsilon  }_{ 0 }=8.854\times { 10 }^{ -12 }\dfrac { { e }^{ 2 } }{ { Nm }^{ 2 } } $$
    Now, $$E\times 4\pi { R }_{ 1 }^{ 2 }=\dfrac { -5\mu C }{ { \epsilon  }_{ 0 } } =\dfrac { { Q }_{ inside } }{ { \epsilon  }_{ 0 } } $$
    $$E=\dfrac { { Q }_{ inside } }{ 4\pi { \epsilon  }_{ 0 }{ R }_{ 1 }^{ 2 } } $$
    $${ E }_{ 1 }=\dfrac { K{ Q }_{ incide } }{ { R }_{ 1 }^{ 2 } } $$
    $${ E }_{ 2 }A=\dfrac { { Q }_{ inside } }{ { \epsilon  }_{ 0 } } $$
    $${ F }_{ y }4\pi { R }_{ z }^{ 2 }=\dfrac { Q }{ { \epsilon  }_{ 0 } } $$
    Now,  $$\dfrac { Q\left( a+b+c \right)  }{ 4\pi { \epsilon  }_{ 0 }\left( { a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 } \right)  } $$

  • Question 2
    1 / -0
    A capacitor of capacitance C = 4 $$\mu F$$  is connected as shown in figure. If internal resistance of the cell is 0.5 . The charge on the capacitor plates is 

    Solution
    At steady state the capacitor is open circuited so no current flows through the $$10$$ $$ohm$$ resistor$$.$$
    Current flowing through $$2$$ $$ohm$$ resistor is 
    $$i = \frac{{2.5}}{{2 + 0.5}} = 2A$$
    Voltage across capacitor terminal$$:$$ $$2.5 - 0.5 \times 1 = 2V$$
    Charge in capacitor plates $$4 \times {10^{ - 6}} \times 2 = 8\,\mu C$$ 
    Hence,
    option $$(B)$$ is correct answer.
  • Question 3
    1 / -0
    The radius of the gold nucleus is $$6.6 \times {10^{ - 15}}m$$  and the atomic number is $$79$$. The electric potential at the surface of the gold nucleus is :
    Solution

  • Question 4
    1 / -0
    Two plates of equal area A , one a square of side $$2L \times 2L $$ and other a rectangle os sides $$ 4L \times L $$ are used to construct a parallel plate capacitor with plates separation . d . if C is the capacitance , then C=

  • Question 5
    1 / -0
    Four capacitors are joined as shown in the adjoining figure. The capacitance of each is $$ 8\mu F $$. The equivalent capacitance between the points A and B is

    Solution

  • Question 6
    1 / -0
    A combination arrangement of the capacitors is shown in the figure.
    (i) $$ C_1=3 \mu F , C_2=6 \mu F and C_3 = 2 \mu F $$ then equivalent capacitance between 'a'and 'b' is 

    Solution

  • Question 7
    1 / -0
    In the given figure find $$V_{A} - V_{B}$$.

  • Question 8
    1 / -0
     An infinite number of charges 'q' each are placed along the x - axis at x =1, x=4 ,x=8 and so on. If the distance are in meters calculate the electric potential at x=0
    Solution
    $$\begin{array}{l} { V_{ 0 } }=\frac { { kq } }{ 1 } +\frac { { kq } }{ 4 } +\frac { { kq } }{ 8 } +....................... \\ =kq\left( { 1+\frac { 1 }{ { { 2^{ 2 } } } } +\frac { 1 }{ { { 2^{ 3 } } } } +.......... } \right)  \\ =kq\left( { 1+\frac { { \frac { 1 }{ 4 }  } }{ { 1-\frac { 1 }{ 2 }  } }  } \right)  \\ =kq\left( { 1+\frac { 2 }{ 4 }  } \right)  \\ =\frac { { 3kq } }{ 2 } =\frac { { 3q } }{ { 8\pi { E_{ 0 } } } }  \end{array}$$
    Hence, Option $$A$$ is correct.
  • Question 9
    1 / -0
    In the situation shown in figure, what should be the relation between Q and q so that electric potential at centre of the square is zero:

    Solution
    $$Q=$$ Sum motion of three side total charges
        $$=q+q+q$$
        $$=3q$$

  • Question 10
    1 / -0
    In the shown network chages in capacitor are same, then $$ \frac {C_1}{C_2} is $$ 

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now