For the first block
Thickness $$={{d}_{1}}$$
Dielectric constant $$={{k}_{1}}$$
Capacitance $$={{C}_{1}}$$
For second block
Thickness $$={{d}_{2}}$$
Dielectric constant $$={{k}_{2}}$$
Capacitance $$={{C}_{2}}$$
Capacitors C1 and C2 are connected in
parallel. So equivalent capacitance is :
$$ \dfrac{1}{{{C}_{eq}}}=\dfrac{1}{{{C}_{1}}}+\dfrac{1}{{{C}_{2}}}
$$
$$ {{C}_{eq}}=\dfrac{{{C}_{1}}{{C}_{2}}}{{{C}_{1}}+{{C}_{2}}}........(1)
$$
Capacitance in parallel plate capacitor is given as
$${{C}_{1}}=\dfrac{{{k}_{1}}{{\varepsilon
}_{0}}A}{{{d}_{1}}}\,\,\And \,\,{{C}_{2}}=\dfrac{{{k}_{2}}{{\varepsilon
}_{0}}A}{{{d}_{2}}}$$
So, equation (1) becomes
$${{C}_{eq}}=\dfrac{{{k}_{1}}{{k}_{2}}{{\varepsilon
}_{0}}A}{{{k}_{1}}{{d}_{2}}+{{k}_{2}}{{d}_{1}}}.............(2)$$
Equivalent capacitance for the combination is
$$C=\dfrac{k{{\varepsilon
}_{0}}A}{{{d}_{1}}+{{d}_{2}}}.........(2)$$
From equation (1) and (2)
$$ \dfrac{{{k}_{1}}{{k}_{2}}{{\varepsilon
}_{0}}A}{{{k}_{1}}{{d}_{2}}+{{k}_{2}}{{d}_{1}}}=\dfrac{k{{\varepsilon
}_{0}}A}{{{d}_{1}}+{{d}_{2}}} $$
$$ k=\dfrac{{{k}_{1}}{{k}_{2}}({{d}_{1}}+{{d}_{2}})}{{{k}_{1}}{{d}_{2}}+{{k}_{2}}{{d}_{1}}}
$$